Overview of nEXO neutrinoless double beta decay $(0\nu\beta\beta)$ experiment.

Prakash Gautam

Drexel University

PPC, June 8, 2022

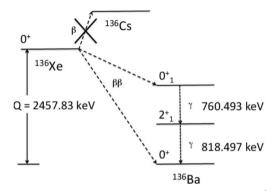
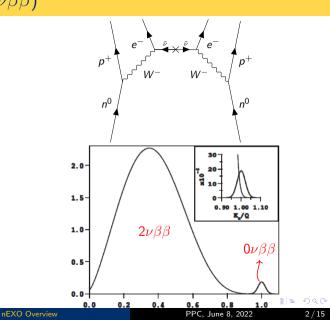


Image: A test in te

1/15

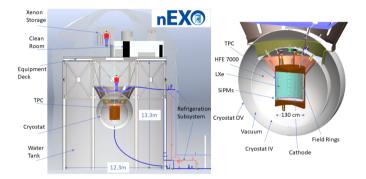
3 3 9 9 9


Neutrinoless double beta decay($0\nu\beta\beta$)

•
$$(Z,A) \rightarrow (Z+2,A)^{++} + 2e^{-}$$

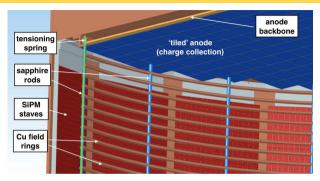
- Violates lepton number conservation.
- Indicates new physics beyond the Standard Model (SM).

Prakash Gautam (Drexel U.)



nEXO Collaboration

nEXO Detector


- Single phase homogeneous monolithic Time Projection Chamber (TPC).
- Uses liquid xenon (LXe) enriched to 90% with $^{136}{\rm Xe}.$
- 5 ton LXe in a 1.3m × 1.3m cylindrical detector with single drift region.
- Combination of topology, event position, scintillation and charge yield to identify event.


▶ ∢ ⊒

1.5

Light and Charge Detection

- Silicon Photo Multipliers (SiPMs) are used to detect scintillation light.
- Charge is detected at anode.
- No high voltage needed.

 0 Gallina et al., "Characterization of the Hamamatsu VUV4 MPPCs for nEXO". $\Rightarrow \langle B \rangle \langle$

- Search for neutrinoless double beta decay $(0\nu\beta\beta)$.
- Reach sensitivity of $1.35\times 10^{28} \text{yr}$ to Xe-136 at 10yr.
- Achieve energy resolution $0.8\%^{-1}$.

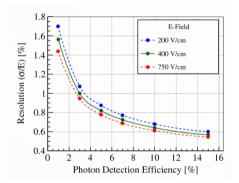
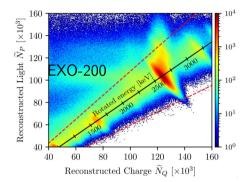
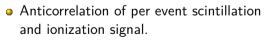
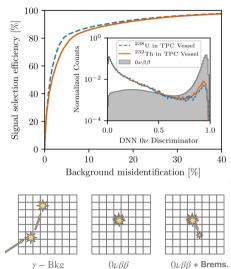
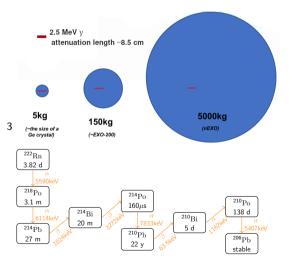




Figure: Energy Resolution vs Photon Detection Efficiency (arXiv:1805.11142)

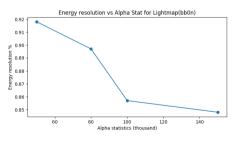

¹Adhikari et al., "nEXO: neutrinoless double beta decay search beyond 10²⁸ year_half-life sensitivity".

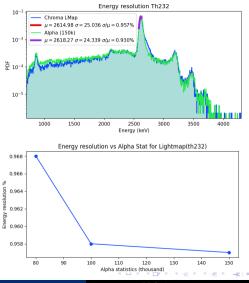
Multi Dimensional Information


- SS vs MS event identification.
- Improved energy resolution: $\frac{\sigma}{Q_{\scriptscriptstyle BB}} \sim 0.8\%$

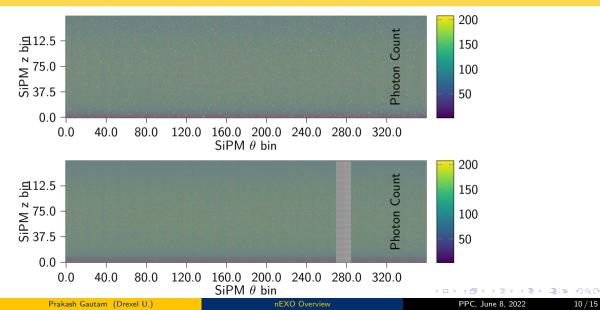
315

Self Shielding

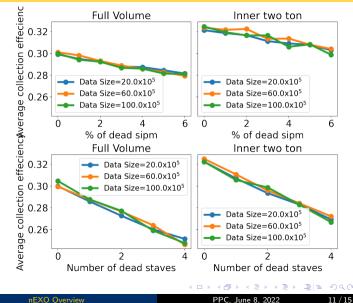

- For gamma calibration source, only few "deep events" detected in inner detector due to self shielding.
- Dissolved sources are better to calibrate inner detector. ²
- Short lived isotopes of ^{220}Rn and ^{222}Rn can be used to get alpha sources.
- The alphas have higher fraction of their energy in the scintillation channel, which makes light calibration with lightmap more precise.



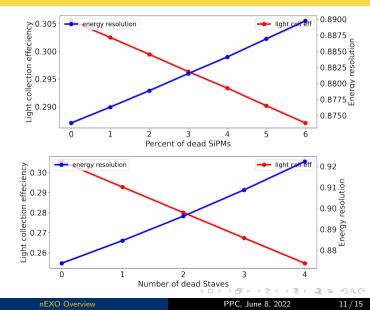
³Lenardo et al., "Development of a 127 Xe calibration source for nEXO".


Dissolved Source Calibration

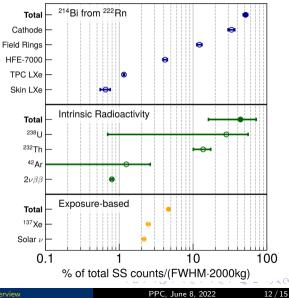
- With ~150k alphas, the energy resolution with alpha lightmap is comparable to the MC lightmap.
- $0\nu\beta\beta$ and ²³²Th simulation data show similar behavior.



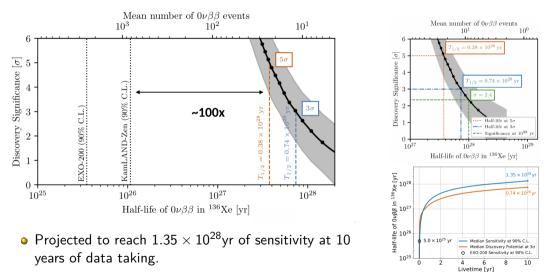
SiPM Quality Control Studies


SiPM Quality Control Studies

- Different % of dead SiPM and number of dead stave considered.
- Collection efficiency goes down linearly as the lost SiPM area.
- Energy resolution still within 1% for few % lost SiPM.


SiPM Quality Control Studies

- Different % of dead SiPM and number of dead stave considered.
- Collection efficiency goes down linearly as the lost SiPM area.
- Energy resolution still within 1% for few % lost SiPM.

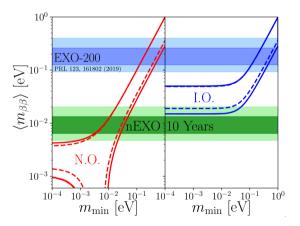


Background

- Well understood external backgrounds.
- Bottom up approach in constraining the internal background.

Sensitivity

 \bullet ${\sim}100X$ sensitivity than current generation experiments.


Prakash Gautam (Drexel U.)

·=-

Parameter Space Coverage

$$\left[T_{1/2}^{0\nu}\right]^{-1} = \frac{\langle m_{\beta\beta}\rangle^2}{m_e^2} G^{0\nu} \left|M^{0\nu}\right|^2$$

- Search for $0\nu\beta\beta$ which is a strong probe for physics beyond the SM.
- nEXO will fully cover the inverted hierarchy parameter space.
- nEXO is next generation tonne scale 0νββ experiment.
 - Very good energy resolution.
 - Very low internal background and strong external background discrimination.
 - Projected to reach sensitivity of 1.35×10^{28} yr with 10 yr of data taking.

PPC, June 8, 2022

Thank You

Prakash Gautam (Drexel U.)

PPC, June 8, 2022

Backup

Prakash Gautam (Drexel U.)

PPC, June 8, 2022

Rn alpha Lightmaps

- ²¹⁴Po alpha from ²²²Rn simulated to study the lightmap calibration with alphas.
- Only includes events in the active region.
- The collection efficiency is scaled to

 $PTE = \frac{CollectedLight}{median(CollectedLight)}$

- Used Neural Network to make lightmap.
 - Neural network model favored over others.

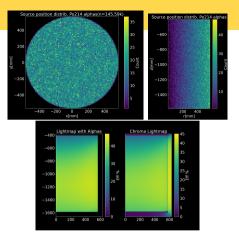
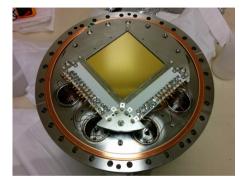



Figure: Source position distribution alphas simulation data (top), lightmap with alpha simulation (bottom left), lightmap with chroma optical simulation (bottom right)

315

Charge Detection

- Prototpye: 10cm \times 10cm and 300 $\mu{\rm m}$ thick tile.
- Substrate: Fused silica wafer
- 30 "X" and 30 "Y" strips. Prakash Gautam (Drexel U.)

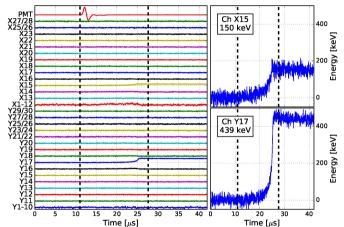


Figure: Sample event: waveforms form all channels and PMT for ²⁰⁷Bi at 570 keV. State of the art charge resolution 5.5% INCO Overview PPC, June 8, 2022 3/3