Beyond Fisher Forecasting for Cosmology
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Why forecasting?

» Upcoming cosmological surveys are expected to produce vast quantities of data.

» [t IS Important to be able to accurately forecast the constraints those data can place

on cosmological models, so that instrumental and computational time and resources
can be used most effectively.
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Fisher forecasting

» Forecasts of the parameter constraints on a given model often assume:

1
P = N exp —EFabApaApb]

» Where P is the posterior probability of the model, F,, is known as the “Fisher matrix’,
and Ap :=p — Pria- Pria IS the fiducial value of the parameter p.

E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of Gaussianity: forecasting with higher order Fisher matrices,” Mon. Not. Roy. Astron. Soc. 441 no. 2, (2014) 1831-1840, arXiv:1401.6892

[astro-ph.CO].



Fisher forecasting

» Given a data covariance matrix ¢ and a vector of model predictions i, the Fisher
matrix can be written in the form

» Where M = C1, the subscript “, a” refers to a partial derivative taken with respect to
the parameter p“, and the model vectors are contracted with M in the data space (in
Einstein notation, ji ,Mji, = u’;M;;u’, where i and j are indices in the data space).

E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of Gaussianity: forecasting with higher order Fisher matrices,” Mon. Not. Roy. Astron. Soc. 441 no. 2, (2014) 1831-1840, arXiv:1401.6892

[astro-ph.CO].



Fisher forecasting

» Advantages of Fisher forecasting: speed and computational simplicity.

» Disadvantage: assumes that the components of i are linear in the model parameters.

» Bottom line: Fisher forecasting can, in some situations, produce oversimplified
constraints.

E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of Gaussianity: forecasting with higher order Fisher matrices,” Mon. Not. Roy. Astron. Soc. 441 no. 2, (2014) 1831-1840, arXiv:1401.6892

[astro-ph.CO].



Beyond Fisher forecasting

» For an arbitrary posterior P, the Derivative Approximation for Likelihoods (DALI), to
second order in the model vector derivatives, is

1 a b 1 a b C 1 a b C d
P = Nexp —3 apAp©Ap© — EGabc&p Ap®Ap® — gHabcdﬂp Ap®Ap“Ap”|,

»where Ggape = UapMic, Hapea = HapMiicq, and N is a normalization constant.

» Note: this order of approximation is known as “Doublet-DALI", or “Doublet”, for
short.

E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of Gaussianity: forecasting with higher order Fisher matrices,” Mon. Not. Roy. Astron. Soc. 441 no. 2, (2014) 1831-1840, arXiv:1401.6892

[astro-ph.CO].



Beyond Fisher forecasting at low redshift

» Flat ACDM, characterized by the Hubble parameter

H(z) = Hoy/ Qmo(1 + 2)3+1 — Qupo

» Flat wCDM, characterized by the Hubble parameter

H(z) = H, \[Qmo(l + 2)34(1 — Qo) (1 + 2)30+wWx)
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Low redshift data

» 31 H(z) measurements from cosmic chronometers.
» 6 comoving distance and H(z) measurements from BAO.

» 120 standard ruler measurements from QSOs.

See J. Ryan, Y. Chen, and B. Ratra, “Baryon acoustic oscillation, Hubble parameter, and angular size measurement constraints on the Hubble constant, dark energy dynamics, and spatial curvature,” MNRAS
488 no. 3, (Sept., 2019) 3844-3856, arXxiv:1902.03196 [astro-ph.CO], and J. Ryan, S. Doshi, and B. Ratra, “Constraints on dark energy dynamics and spatial curvature from Hubble parameter and
baryon acoustic oscillation data,” MNRAS 480 (Oct., 2018) 759—767, astro-ph/1805.06408 for details.



Constraints on Flat ACDM
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Constraints on Flat ACDM
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Constraints on flat wCDM
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Constraints on flat wCDM
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When do we need to use DALI?

» |f exact likelihood is concave in one or more directions, Fisher approximation will
break down.

» Not easy to tell, a priori, when this will happen. Therefore, it's not easy to tell, ahead of
time, whether we need to use the DALI approximation.

» Can we quantify the difference between Fisher and DALI without sampling?

SMU



When do we need to use DALI?

» Think of likelihood contours as (D-1)-dimensional hypersurfaces embedded D-
dimensional parameter space:

L(p?) == —In[P(pH)] =C

» C is a constant, and P(p?) is the posterior probability as a function of the model
parameters {p?}. This is a constraint equation of the form

o(p?) =0
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When do we need to use DALI?

» We can define a unit vector that is normal to the likelihood hypersurfaces:

— (D’a
\/gab (D,acb,b

Ng

» Where g*” = §%°. The divergence of the unit normal vector field is

K = n’,

E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge, UK, 2004
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When do we need to use DALI?

» The divergence K = h48K,; is the trace of the extrinsic curvature K,5, where “A” and
“B” refer to coordinates on the hypersurface, and h,p is the metric on the
hypersurface.

» If K > 0 at a given point, then the hypersurface is convex there. On the other hand, if
K < 0 at a given point, then the hypersurface is concave there.

E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge, UK, 2004
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Extrinsic curvature test

» Step 1: compute K on grids covering every possible cross-section of the exact
posterior.

» Why cross-sections? K can be computed very quickly in two dimensions, with results that are easier
to interpret.

» Step 2: Plot cross-sections on which negative (or zero) curvature has been detected,
visually inspect plots to determine extent of deviation from Fisher.

» Alternatively, compute K /K, where K. is the curvature of the Fisher hypersurfaces.
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Extrinsic curvature test applied to flat ACDM
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Extrinsic curvature test applied to flat ACDM
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Extrinsic curvature test applied to flat wCDM
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Extrinsic curvature test applied to flat wCDM
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Extrinsic curvature test applied to flat wCDM
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Conclusion

» Testing the DALI approach on real data, we found it to be particularly useful in cases
for which the data have little constraining power, and there are strong degeneracies
between model parameters.

» We have also demonstrated a simple test that can be used to assess whether it is
necessary to go beyond the Fisher approximation when forecasting parameter
constraints.
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