Theoretical review of rare B decays

Nazila Mahmoudi

Lyon University (FR) and CERN TH

XV International Conference on Interconnections between Particle Physics and Cosmology June 6 – 10, 2022

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
● 00					
Why flavour	physics?				

CP violation:

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

ightarrow Probing New Physics at the intensity frontier

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000					
Why flavour p	ohysics?				

CP violation:

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

ightarrow Probing New Physics at the intensity frontier

	clusion				
Why flavour physics?					

CP violation:

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

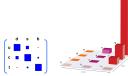
► The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

ightarrow Probing New Physics at the intensity frontier



	clusion				
Why flavour physics?					

CP violation:

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

\rightarrow Probing New Physics at the intensity frontier

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000					
Why rare B o	decays?				

They are allowed only at loop level in the SM \rightarrow SM contributions are very small

- New Physics contributions can have similar magnitudes
- QCD corrections are known with high accuracy
- Promissing experimental situation
- Interesting interplay between *B* physics, collider and dark matter searches (not covered in this talk)
- Indirect hints for new physics: Flavour "anomalies"

```
Deviations from the Standard Model predictions in b \rightarrow s\ell\ell transitions
```

Focus of the talk, since there are so few these days and they are still among our best bets!

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000					
Why rare B	decays?				

They are allowed only at loop level in the SM \rightarrow SM contributions are very small

- New Physics contributions can have similar magnitudes
- QCD corrections are known with high accuracy
- Promissing experimental situation
- Interesting interplay between *B* physics, collider and dark matter searches (not covered in this talk)
- Indirect hints for new physics: Flavour "anomalies"

```
Deviations from the Standard Model predictions in b \rightarrow s\ell\ell transitions
```

Focus of the talk, since there are so few these days and they are still among our best bets!

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000	00000	000000000000	0000	000	00
Why rare <i>B</i> d	lecays?				

They are allowed only at loop level in the SM \rightarrow SM contributions are very small

- New Physics contributions can have similar magnitudes
- QCD corrections are known with high accuracy
- Promissing experimental situation

- Interesting interplay between *B* physics, collider and dark matter searches (not covered in this talk)
- Indirect hints for new physics: Flavour "anomalies"

Deviations from the Standard Model predictions in $b \rightarrow s\ell\ell$ transitions

Focus of the talk, since there are so few these days and they are still among our best bets!

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000					
Why rare B d	lecays?				

They are allowed only at loop level in the SM \rightarrow SM contributions are very small

- New Physics contributions can have similar magnitudes
- QCD corrections are known with high accuracy
- Promissing experimental situation

- Interesting interplay between *B* physics, collider and dark matter searches (not covered in this talk)
- Indirect hints for new physics: Flavour "anomalies"

```
Deviations from the Standard Model predictions in b \rightarrow s\ell\ell transitions
```

Focus of the talk, since there are so few these days and they are still among our best bets!

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000					
Why rare B	decays?				

They are allowed only at loop level in the SM \rightarrow SM contributions are very small

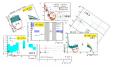
- New Physics contributions can have similar magnitudes
- QCD corrections are known with high accuracy
- Promissing experimental situation
- Interesting interplay between *B* physics, collider and dark matter searches (not covered in this talk)
- Indirect hints for new physics: Flavour "anomalies"

Deviations from the Standard Model predictions in $b \rightarrow s\ell\ell$ transitions

Focus of the talk, since there are so few these days and they are still among our best bets!

There are also anomalies in the **tree-level** charged current decays $(b \rightarrow c)$:

PPC 2022 - Washington Univ. - St. Louis, 9 June 2022



Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000					
Why rare B	decays?				

They are allowed only at loop level in the SM \rightarrow SM contributions are very small

- New Physics contributions can have similar magnitudes
- QCD corrections are known with high accuracy
- Promissing experimental situation
- Interesting interplay between *B* physics, collider and dark matter searches (not covered in this talk)
- Indirect hints for new physics: Flavour "anomalies"

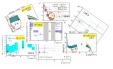
Deviations from the Standard Model predictions in $b \rightarrow s\ell\ell$ transitions

Focus of the talk, since there are so few these days and they are still among our best bets!

There are also anomalies in the **tree-level** charged current decays $(b \rightarrow c)$:

 \rightarrow see next talk by A. Soni

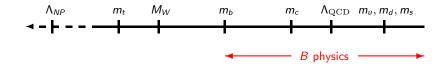
PPC 2022 - Washington Univ. - St. Louis, 9 June 2022



Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000					
Why is it co	mplicated?				

There are two problems due to the mixture of strong and weak interactions:

- Weak Lagrangian in terms of quarks, but hadronic final states
- Multi-scale problem M_W , m_b , $\Lambda_{\rm QCD}$, $m_{\rm light}$



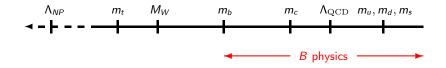
B physics: scales of order m_b , or lower!

So why not integrate out heavier degrees of freedom (t, W, Z)? (with still *b*, *c*, *s*, *d*, *u*, *g* and γ as dynamical particles)

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000					
Why is it co	mplicated?				

There are two problems due to the mixture of strong and weak interactions:

- Weak Lagrangian in terms of quarks, but hadronic final states
- Multi-scale problem M_W , m_b , $\Lambda_{\rm QCD}$, $m_{\rm light}$



B physics: scales of order m_b , or lower!

So why not integrate out heavier degrees of freedom (t, W, Z)? (with still *b*, *c*, *s*, *d*, *u*, *g* and γ as dynamical particles)

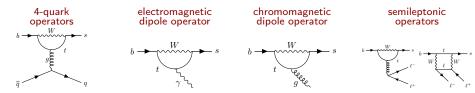
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
	00000				
Theoretical	framework				

Effective field theory

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1\cdots 10} \left(C_i(\mu) \mathcal{O}_i(\mu) \right)$$

Separation between short distance (Wilson coefficients) and long distance (local operators) effects

Operator set for $b \rightarrow s$ transitions:



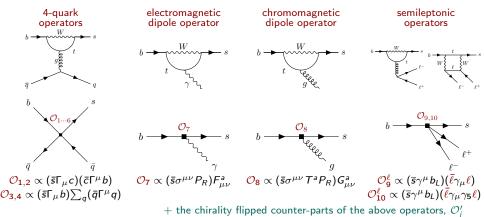
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
	00000				
Theoretical f	framework				

Effective field theory

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1\cdots 10} \left(C_i(\mu) \mathcal{O}_i(\mu) \right)$$

Separation between short distance (Wilson coefficients) and long distance (local operators) effects

Operator set for $b \rightarrow s$ transitions:



PPC 2022 - Washington Univ. - St. Louis, 9 June 2022

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
	0000				
Wilson coeffi	cients				

The Wilson coefficients are calculated perturbatively and are process independent

Two main steps:

• matching between the effective and full theories \rightarrow extraction of the $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$

$$C_i^{\text{eff}}(\mu) = C_i^{(0)\text{eff}}(\mu) + rac{lpha_s(\mu)}{4\pi}C_i^{(1)\text{eff}}(\mu) + \cdots$$

• Evolving the $C_i^{eff}(\mu)$ to the scale relevant for *B* decays, $\mu \sim m_b$ using the RGE runnings.

SM contributions known to NNLL (Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06,...)

$$C_7 = -0.294$$
 $C_9 = 4.20$ $C_{10} = -4.16$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
	00000				
Hadronic qua	antities				

To compute the amplitudes:

$$\mathcal{A}(A o B) = \langle B | \mathcal{H}_{ ext{eff}} | A
angle = rac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B | \mathcal{O}_i | A
angle(\mu)$$

 $\langle B|O_i|A\rangle$: hadronic matrix element

How to compute matrix elements?

 \rightarrow Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...

 \rightarrow Describe hadronic matrix elements in terms of hadronic quantities

Two types of hadronic quantities:

- Decay constants: Probability amplitude of hadronising quark pair into a given hadron
- Form factors: Transition from a meson to another through flavour change

Once the Wilson coefficients and hadronic quantities calculated, the physical observables (branching fractions,...) can be calculated.

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
	00000				
b ightarrow s transit	tions				

Inclusive decays $B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$

- Precise theory calculations
- Heavy mass expansion
- $\bullet\,$ Theoretical description of power corrections available $\to\,$ they can be calculated or estimated within the theoretical approach
- Require Belle-II for full exploitation (complete angular analysis)

Exclusive decays

- Leptonic: $B_s \rightarrow \mu^+ \mu^-$
 - \rightarrow theory errors under control (decay constant with rather good precision)
- Semileptonic: $B \to K^* \ell^+ \ell^-$, $B \to K \ell^+ \ell^-$ and $B_s \to \phi \mu^+ \mu^-$
 - \rightarrow many experimentally accessible observables
 - \rightarrow issue of hadronic uncertainties in exclusive modes

no theoretical description of power corrections existing within the theoretical framework of QCD factorisation and SCET $\,$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
	00000				
Issue of the l	hadronic uncertaintie	s			

Effective Hamiltonian has two parts:

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_8 O_8 \right] \\ \mathcal{H}_{\lambda}^{\mathrm{(had)}} &= -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \left(\ell^+ \ell^- |j_{\mu}^{\mathrm{em, lept}}(x)| \mathbf{0} \right) \\ &\times \int d^4 y \, e^{iq \cdot y} \left(\bar{K}_{\lambda}^* | T(j^{\mathrm{em, had}}, \mu(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(\mathbf{0}) \right) | \bar{B} \right) \\ &\equiv \frac{e^2}{q^2} e_{\mu} \mathcal{L}_{V}^{\mu} \left[\underbrace{\mathrm{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) \\ &\mathrm{Non-Fact., QCDf} \\ &+ \underbrace{h_{\lambda}(q^2)} \right] \\ &\mathrm{power \ corrections} \end{split}$$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
	00000				
Issue of the l	hadronic uncertainties	5			

Effective Hamiltonian has two parts:

$$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} &= -\frac{\mathbf{4}G_F}{\sqrt{2}} \, V_{tb} \, V_{ts}^* \Big[\sum_{i=\mathbf{7},\mathbf{9},\mathbf{10}} C_i^{(\prime)} \mathcal{O}_i^{(\prime)} \Big] \\ \langle \tilde{K}^* | \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} | \tilde{B} \rangle : \, B \to K^* \text{ form factors } V, \, A_{\mathbf{0},\mathbf{1},\mathbf{2}}, \, \mathsf{T}_{\mathbf{1},\mathbf{2},\mathbf{3}} \end{split}$$

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} &= -\frac{\mathbf{4}G_F}{\sqrt{2}} \mathbf{V}_{tb} \mathbf{V}_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_8 O_8 \right] \\ \mathcal{A}_{\lambda}^{\mathrm{(had)}} &= -i \frac{e^2}{q^2} \int \!\! d^4 \mathbf{x} e^{-iq \cdot \mathbf{x}} \langle \ell^+ \ell^- | U_{\mu}^{\mathrm{em}, \mathrm{lept}}(\mathbf{x}) | \mathbf{0} \rangle \\ &\times \int \!\! d^4 \mathbf{y} \, e^{iq \cdot \mathbf{y}} \langle \tilde{\mathbf{k}}_{\lambda}^* | T \{ j^{\mathrm{em}, \mathrm{had}}, \boldsymbol{\mu}(\mathbf{y}) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(\mathbf{0}) \} | \tilde{B} \\ &\equiv \frac{e^2}{q^2} \epsilon_{\mu} \mathcal{L}_{V}^{\mu} \left[\begin{array}{c} \mathrm{LO} \text{ in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) \\ & \mathrm{Non-Fact., } \mathrm{QCDf} \end{array} \right] \\ &+ \underbrace{h_{\lambda}(q^2)}{} \\ & \mathrm{power \ corrections} \\ &\to \mathrm{unknown} \\ \\ \mathrm{Recent \ progress \ show \ that \ these \ corrections \ should \ be} \\ \mathrm{Yery \ small} (2011.09813) \end{split}$$

Transversity amplitudes:

$$\begin{split} A_{\perp}^{l,R} &\simeq N_{\perp} \left\{ (C_{0}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{l,R} &\simeq N_{\parallel} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{l,R} &\simeq N_{0} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \left[(\ldots) A_{1}(q^{2}) + (\ldots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (\ldots) T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \\ &\qquad \qquad \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{split}$$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
	00000				
Issue of the I	nadronic uncertainties	5			

Effective Hamiltonian has two parts:

 $\mathcal{H}_{\rm eff}^{\rm sl} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[$

Transversity amplitudes:

 $A_{\mathbf{0}}^{L,R} \simeq N_{\mathbf{0}} \left\{ \left(C_{\mathbf{0}}^{-} \mp C_{\mathbf{10}}^{-} \right) \left[\left(\ldots \right) \right] \right\}$

 $A_{\mathsf{S}} = N_{\mathsf{S}}(\mathsf{C}_{\mathsf{S}} - \mathsf{C}_{\mathsf{S}}')A_{\mathsf{O}}(q^{\mathsf{2}})$

 $+2m_bC_7^{-}[(\ldots)]$

 $(C_i^{\pm} \equiv C_i)$

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} &= -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \Big[\sum_{i=\mathbf{7},\mathbf{9},\mathbf{10}} C_{i}^{(\prime)} O_{i}^{(\prime)} \Big] \\ \langle \tilde{\kappa}^{*} | \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} | \tilde{b} \rangle : \tilde{b} \to \kappa^{*} \text{ form factors } V, A_{0,1,2}, T_{1,2,3} \\ \text{Transversity amplitudes:} \\ A_{\perp}^{L,R} \simeq N_{\perp} \left\{ (C_{\mathbf{9}}^{+} \mp C_{\mathbf{10}}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{\mathbf{7}}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} \simeq N_{\parallel} \left\{ (C_{\mathbf{9}}^{-} \mp C_{\mathbf{10}}^{-}) \frac{A_{\mathbf{1}}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{\mathbf{7}}^{-} T_{2}(q^{2}) \right\} \\ A_{\mathbf{0}}^{L,R} \simeq N_{\parallel} \left\{ (C_{\mathbf{9}}^{-} \mp C_{\mathbf{10}}^{-}) \frac{A_{\mathbf{1}}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{\mathbf{7}}^{-} T_{2}(q^{2}) \right\} \\ A_{\mathbf{0}}^{L,R} \simeq N_{\parallel} \left\{ (C_{\mathbf{9}}^{-} \mp C_{\mathbf{10}}^{-}) \frac{A_{\mathbf{1}}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{\mathbf{7}}^{-} T_{2}(q^{2}) \right\} \\ A_{\mathbf{5}} = N_{\mathbf{5}}(C_{\mathbf{5}} - C_{\mathbf{5}}^{'}) A_{\mathbf{0}}(q^{2}) \\ \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}^{'} \right) \end{aligned}$$

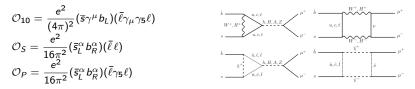
The assumptions on the power corrections can change the theoretical predictions for the branching ratios and angular observables!

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000	00000	000000000000	0000	000	00

Observables and Anomalies

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		•00000000000			
$B_s o \mu^+ \mu^-$					

Relevant operators:



$$\begin{aligned} \text{BR}(B_{s} \to \mu^{+}\mu^{-}) &= \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} \frac{f_{B_{s}}^{2} \tau_{B_{s}} m_{B_{s}}^{3} |V_{tb} V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \\ &\times \left\{ \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) \left|C_{S} - C_{S}'\right|^{2} + \left|(C_{P} - C_{P}') + 2\left(C_{10} - C_{10}'\right) \frac{m_{\mu}}{m_{B_{s}}}\right|^{2} \right\} \end{aligned}$$

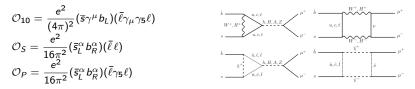
Largest contributions in SM from a Z penguin top loop (75%) and a W box diagram (24%)

SM prediction:
$${
m BR}(B_s o \mu^+ \mu^-) = (3.60 \pm 0.17) imes 10^{-9}$$

Superiso v4.1
M. Beneke, Ch. Bobeth, R. Szafron, JHEP 10 (2019) 232, ...

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		•00000000000			
$B_s o \mu^+ \mu^-$					

Relevant operators:

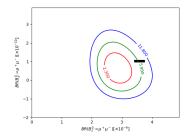


$$\begin{aligned} \text{BR}(B_s \to \mu^+ \mu^-) &= \frac{G_F^2 \alpha^2}{64 \pi^3} f_{B_s}^2 \tau_{B_s} m_{B_s}^3 |V_{tb} V_{ts}^*|^2 \sqrt{1 - \frac{4m_{\mu}^2}{m_{B_s}^2}} \\ &\times \left\{ \left(1 - \frac{4m_{\mu}^2}{m_{B_s}^2} \right) \left| C_S - C_S' \right|^2 + \left| (C_P - C_P') + 2 \left(C_{10} - C_{10}' \right) \frac{m_{\mu}}{m_{B_s}} \right|^2 \right\} \end{aligned}$$

Largest contributions in SM from a Z penguin top loop (75%) and a W box diagram (24%)

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
$B_s o \mu^+ \mu^-$					

Combination of LHCb, ATLAS and CMS measurements:



T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838

$$BR(B_s \to \mu^+ \mu^-)^{exp(comb.)} = (2.85^{+0.34}_{-0.31}) \times 10^{-9}$$

LHCb (9 fb⁻¹): arXiv:2108.09283 ATLAS: JHEP 04 (2019) 098 CMS: JHEP 04 (2020) 188

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
$B o X_s \gamma$					

Inclusive branching ratio of $B \rightarrow X_s \gamma$

Contributing loops:

Main operator: \mathcal{O}_7 but higher order contributions from $\mathcal{O}_1, ..., \mathcal{O}_8$

- Standard OPE for inclusive decays
- Very precise theory prediction (at NNLO)

Experimental value (HFAG 2017): ${
m BR}(ar{B} o X_s \gamma) = (3.32 \pm 0.15) imes 10^{-4}$

SM prediction: BR($\bar{B} \rightarrow X_s \gamma$) = (3.34 ± 0.22) × 10⁻⁴

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
$B o X_s \gamma$					

Inclusive branching ratio of $B o X_s \gamma$

Contributing loops:

Main operator: \mathcal{O}_7 but higher order contributions from $\mathcal{O}_1, ..., \mathcal{O}_8$

- Standard OPE for inclusive decays
- Very precise theory prediction (at NNLO)

Experimental value (HFAG 2017): ${
m BR}(ar{B} o X_s \gamma) = (3.32 \pm 0.15) imes 10^{-4}$

SM prediction: BR($\bar{B} \rightarrow X_s \gamma$) = (3.34 ± 0.22) × 10⁻⁴

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
$B o X_s \gamma$					

Inclusive branching ratio of $B \rightarrow X_s \gamma$

Contributing loops:

Main operator: \mathcal{O}_7 but higher order contributions from $\mathcal{O}_1, ..., \mathcal{O}_8$

- Standard OPE for inclusive decays
- Very precise theory prediction (at NNLO)

Experimental value (HFAG 2017): BR($\bar{B} \rightarrow X_s \gamma$) = (3.32 ± 0.15) × 10⁻⁴

SM prediction: BR($\bar{B} \rightarrow X_s \gamma$) = (3.34 ± 0.22) × 10⁻⁴

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
$B o X_s \gamma$					

Inclusive branching ratio of $B \rightarrow X_s \gamma$

Contributing loops:

Main operator: \mathcal{O}_7 but higher order contributions from $\mathcal{O}_1, ..., \mathcal{O}_8$

- Standard OPE for inclusive decays
- Very precise theory prediction (at NNLO)

Experimental value (HFAG 2017): BR($\bar{B} \rightarrow X_s \gamma$) = (3.32 ± 0.15) × 10⁻⁴

SM prediction: BR($\bar{B} \rightarrow X_s \gamma$) = (3.34 ± 0.22) × 10⁻⁴

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
$b ightarrow s\ell\ell$ Obse	ervables				

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
$b ightarrow s\ell\ell$ Obse	ervables				

• Clean observables: Lepton Flavour Universality ratios

$$R_X = \frac{BR(B \to X \,\mu^+\mu^-)}{BR(B \to X \,e^+e^-)}$$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
$b ightarrow s\ell\ell$ Obs	ervables				

• Clean observables: Lepton Flavour Universality ratios

$$R_X = \frac{BR(B \to X \,\mu^+\mu^-)}{BR(B \to X \,e^+e^-)}$$

• Angular observables:

Ratios of spin amplitudes: P_i , P'_i , S_i ,...

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
$b ightarrow s\ell\ell$ Obs	ervables				

• Clean observables: Lepton Flavour Universality ratios

$$R_X = \frac{BR(B \to X \,\mu^+\mu^-)}{BR(B \to X \,e^+e^-)}$$

• Angular observables:

Ratios of spin amplitudes: P_i , P'_i , S_i ,...

• Branching fractions:

$$BR(B \to K^* \mu^+ \mu^-)$$

$$BR(B \to K \mu^+ \mu^-)$$

$$BR(B_s \to \phi \mu^+ \mu^-)$$

$$BR(\Lambda_b \to \Lambda \mu^+ \mu^-)$$

....

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0}\ell^+\ell^- \ (\bar{K}^{*0} \to K^-\pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$I^ \partial_I$$
 \bar{B} ∂_{K^-} π^+

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

$$J(q^2, heta_\ell, heta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(heta_\ell, heta_{K^*}, \phi)$$

 $^{\succ}$ angular coefficients J_{1-9}

 \searrow functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s

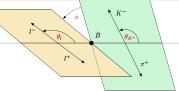
Main operators:

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} \big(\bar{s} \gamma^{\mu} b_L \big) \big(\bar{\ell} \gamma_{\mu} \ell \big), \quad \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} \big(\bar{s} \gamma^{\mu} b_L \big) \big(\bar{\ell} \gamma_{\mu} \gamma_5 \ell \big) \\ \mathcal{O}_S &= \frac{e^2}{16\pi^2} \big(\bar{s}_L^{\alpha} b_R^{\alpha} \big) \big(\bar{\ell} \ell \big), \qquad \mathcal{O}_P &= \frac{e^2}{16\pi^2} \big(\bar{s}_L^{\alpha} b_R^{\alpha} \big) \big(\bar{\ell} \gamma_5 \ell \big) \end{aligned}$$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000000000000000000000000000000			
$B o K^* \mu^+ \mu$					
				K-	

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0}\ell^+\ell^- \ (\bar{K}^{*0} \to K^-\pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:



$$\frac{d^{4}\Gamma}{dq^{2} d\cos\theta_{\ell} d\cos\theta_{K^{*}} d\phi} = \frac{9}{32\pi} J(q^{2},\theta_{\ell},\theta_{K^{*}},\phi)$$

$$J(q^2, \theta_{\ell}, \theta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(\theta_{\ell}, \theta_{K^*}, \phi)$$

\gamma angular coefficients

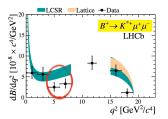
 \searrow functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s

 J_{1-0}

Spin amplitudes: functions of Wilson coefficients and form factors

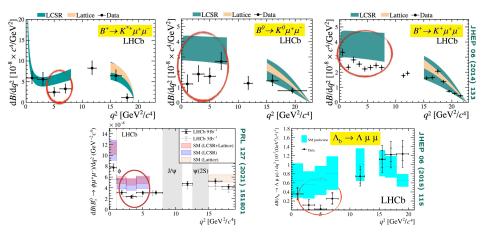
Main operators:

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
$b ightarrow s\ell\ell$ Brai	nching Ratios				

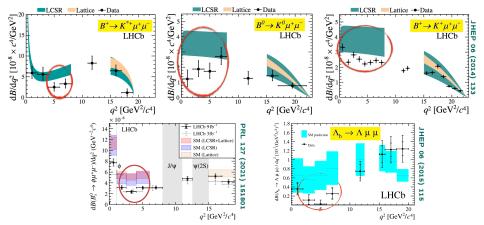


Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
$b \rightarrow c \ell \ell \operatorname{Bran}$	ching Ratios				

uning



Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
$b \rightarrow s \ell \ell Br$	anching Ratios				



- consistent deviation pattern with the SM predictions
- significance of the deviations between \sim 2 and 3.5 σ
- general trend: EXP < SM in low q^2 regions
- ... but the branching ratios have very large theory uncertainties!

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
$B o K^* \mu^+ \mu$	Angular Observabl	es			

Optimised observables: form factor uncertainties cancel at leading order

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\text{bin}} = \frac{1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\text{bin}} = \frac{-1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\text{bin}} = \frac{-1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{\rm bin}' = \sqrt{-\int_{\rm bin} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{\rm bin} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

+ CP violating clean observables and other combinations

U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104 S. Descotes-Genon et al., JHEP 1305 (2013) 137

Or alternatively:

$$S_{i} = \frac{J_{i(s,c)} + \bar{J}_{i(s,c)}}{\frac{d\Gamma}{dq^{2}} + \frac{d\bar{\Gamma}}{dq^{2}}} , \qquad P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}}$$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
Tension in th	ne angular observable	es			

$B^0 ightarrow K^{*0} \mu^+ \mu^-$ angular observables, in particular P'_5 / S_5

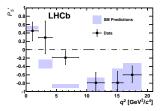
- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb $^{-1}$): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (THEP 1602, 104 (2018))

3.7 σ deviation in the 3rd bin

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
Tension in th	ne angular observabl	es			

 $B^0
ightarrow K^{*0} \mu^+ \mu^-$ angular observables, in particular P'_5 / S_5

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
 - March 2015 (3 fb^{-1}): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))



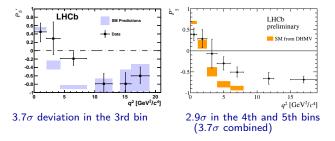
 3.7σ deviation in the 3rd bin

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
Tension in th	e angular observables	5			

 $B^0
ightarrow {\cal K}^{*0} \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)

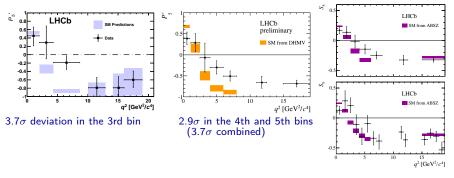
Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))



Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
Tension in th	e angular observables	;			

 $B^0
ightarrow K^{*0} \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

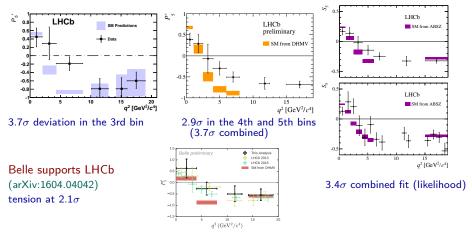


3.4 σ combined fit (likelihood)

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
Tension in the	e angular observables	;			

 $B^0
ightarrow K^{*0} \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

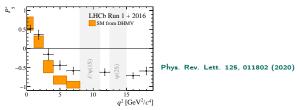


Nazila Mahmoudi

PPC 2022 - Washington Univ. - St. Louis, 9 June 2022

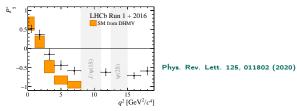
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
Tension in th	e angular observable	s - 2020 updates			

 $P_5'(B^0 \to K^{*0} \mu^+ \mu^-)$: 2020 LHCb update with 4.7 fb⁻¹: $\sim 2.9\sigma$ local tension

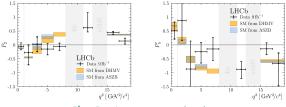


Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		0000000000000			
Tension in th	e angular observables	s - 2020 updates			

 $P'_5(B^0 \to K^{*0} \mu^+ \mu^-)$: 2020 LHCb update with 4.7 fb⁻¹: $\sim 2.9\sigma$ local tension



First measurement of $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ angular observables using the full Run 1 and Run 2 dataset (9 fb⁻¹):



Phys. Rev. Lett. 126, 161802 (2021)

The results confirm the global tension with respect to the SM!

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		00000000000000			
Lepton flavo	ur universality tests				

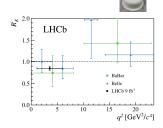
Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

 $R_{K} = BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})/BR(B^{+} \rightarrow K^{+}e^{+}e^{-})$

- Theoretical description similar to $B\to K^*\mu^+\mu^-,$ but different since K is scalar
- SM prediction very accurate: $R_{K}^{\mathrm{SM}} = 1.0006 \pm 0.0004$
- $\bullet\,$ Latest update: March 2021 using 9 fb^{-1}

$$R_{K}^{\rm exp} = 0.846^{+0.042}_{-0.039} ({\rm stat})^{+0.013}_{-0.012} ({\rm syst})$$

• 3.1σ tension in the [1.1-6] GeV² bin



Nature Phys. 18 (2022) 3, 277

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		00000000000000			
Lepton flavo	ur universality tests				

Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

 $R_{\rm K} = BR(B^+ \rightarrow K^+ \mu^+ \mu^-)/BR(B^+ \rightarrow K^+ e^+ e^-)$

- Theoretical description similar to $B\to K^*\mu^+\mu^-,$ but different since K is scalar
- SM prediction very accurate: ${\it R}_{\it K}^{\rm SM}=1.0006\pm0.0004$
- Latest update: March 2021 using 9 fb⁻¹

 $R_{K}^{\rm exp} = 0.846^{+0.042}_{-0.039} ({\rm stat})^{+0.013}_{-0.012} ({\rm syst})$

• 3.1σ tension in the [1.1-6] GeV² bin

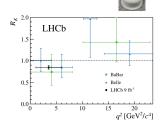
Lepton flavour universality in $B^0 \to K^{*0}\ell^+\ell^ R_{K^*} = BR(B^0 \to K^{*0}\mu^+\mu^-)/BR(B^0 \to K^{*0}e^+e^-)$

• LHCb measurement from April 2017 using 3 fb^{-1}

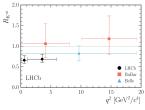
$$R_{K^*}^{
m exp, bin1} = 0.66^{+0.11}_{-0.07}(
m stat) \pm 0.03(
m syst)$$

$$R_{K^*}^{\rm exp,bin2} = 0.69^{+0.11}_{-0.07}({\rm stat}) \pm 0.05({\rm syst})$$

• 2.2-2.5 σ tension in each bin



Nature Phys. 18 (2022) 3, 277



JHEP 08 (2017) 055

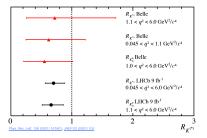
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		00000000000000			
Lepton flavo	ur universality tests				

Two new measurements (October 2021) with 9 fb^{-1} :

 $B^+
ightarrow K^{*+} \ell^+ \ell^-$ and $B^0
ightarrow K^0_S \, \ell^+ \ell^-$

 $R_{K^{*+}} = 0.70^{+0.18}_{-0.13}(stat)^{+0.03}_{-0.04}(syst)$ and $R_{K^0_{5}} = 0.66^{+0.20}_{-0.15}(stat)^{+0.02}_{-0.04}(syst)$

Phys.Rev.Lett. 128 (2022) 19, 191802



More measurements to come:

$$B^0_s o \phi \ell^+ \ell^-$$
, $B o \pi \ell^+ \ell^-$, ...

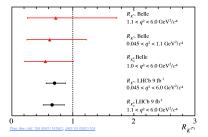
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		00000000000000			
Lepton flavo	ur universality tests				

Two new measurements (October 2021) with 9 fb^{-1} :

 $B^+
ightarrow K^{*+} \ell^+ \ell^-$ and $B^0
ightarrow K^0_S \, \ell^+ \ell^-$

 $R_{K^{*+}} = 0.70^{+0.18}_{-0.13}(stat)^{+0.03}_{-0.04}(syst)$ and $R_{K^0_{5}} = 0.66^{+0.20}_{-0.15}(stat)^{+0.02}_{-0.04}(syst)$

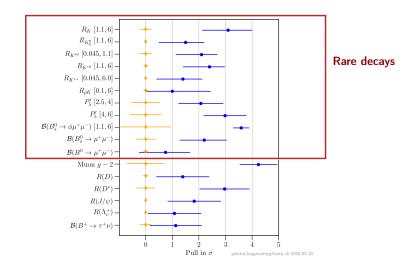
Phys.Rev.Lett. 128 (2022) 19, 191802



More measurements to come:

$$B^{0}_{s}
ightarrow \phi\ell^{+}\ell^{-}$$
, $B
ightarrow \pi\ell^{+}\ell^{-}$, ...

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000000			
Summary of	anomalies				



Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
		000000000000			
Sensitivity to	Wilson coefficients				

Many observables, with different sensitivities to different Wilson coefficients.

decay	obs	C ₇ ^(')	$C_{9}^{(\prime)}$	C ₁₀ ^(')
$B ightarrow X_s \gamma$	BR	x		
$B ightarrow K^* \gamma$	BR, AI	х		
$B \to X_s \ell^+ \ell^-$	dBR/d q^2 , $A_{ m FB}$	х	х	х
$B \to K \ell^+ \ell^-$	dBR/dq^2	х	х	x
$B \to K^* \ell^+ \ell^-$	dBR/dq², angular obs.	х	х	x
$B_s o \phi \ell^+ \ell^-$	dBR/dq², angular obs.	х	х	х
$B_s ightarrow \mu^+ \mu^-$	BR			х

 \mathcal{C}_9 is the main player to explain the anomalies because \mathcal{C}_7 and \mathcal{C}_{10} are severely constrained!

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000	00000	000000000000	0000	000	00

Global fits

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
			0000		
What the dat	ta tell us?				

Many observables \rightarrow Global fits

NP manifests itself in shifts of individual coefficients with respect to SM values:

(

$$\mathcal{C}_i(\mu) = \mathcal{C}_i^{\mathrm{SM}}(\mu) + \delta \mathcal{C}_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables

Theoretical uncertainties and correlations

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- $B \rightarrow K^{(*)}$ and $B_s \rightarrow \phi$ form factors are obtained from the lattice+LCSR combinations (1411.3161, 1503.05534), including all the correlations
- Parameterisation of uncertainties from power corrections:

$$\mathcal{A}_k o \mathcal{A}_k \left(1 + a_k \exp(i\phi_k) + rac{q^2}{6 \ {
m GeV}^2} b_k \exp(i\theta_k)
ight)$$

 $|a_k|$ between 10 to 60%, $b_k \sim 2.5 a_k$ Low recoil: $b_k = 0$

 \Rightarrow Computation of a (theory + exp) correlation matrix

PPC 2022 - Washington Univ. - St. Louis, 9 June 2022

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
			0000		
Global fits					

Global fits of the observables obtained by minimisation of

$$\chi^{2} = (\vec{O}^{\text{th}} - \vec{O}^{\text{exp}}) \cdot (\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1} \cdot (\vec{O}^{\text{th}} - \vec{O}^{\text{exp}})$$
$$(\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1} \text{ is the inverse covariance matrix.}$$

183 observables relevant for leptonic and semileptonic decays:

- BR($B \rightarrow X_s \gamma$)
- BR($B \rightarrow X_d \gamma$)
- BR($B \rightarrow K^* \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s \mu^+ \mu^-)$
- $BR^{low}(B \rightarrow X_s e^+ e^-)$
- $BR^{high}(B \rightarrow X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_s \rightarrow e^+e^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)
- R_K in the low q^2 bin

- R_{K^*} in 2 low q^2 bins
- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- $B \rightarrow K^+ \mu^+ \mu^-$: BR, F_H
- $B \rightarrow K^* e^+ e^-$: BR, F_L , A_T^2 , A_T^{Re}
- $B \to K^{*0}\mu^+\mu^-$: BR, F_L, A_{FB}, S₃, S₄, S₅, S₇, S₈, S₉ in 8 low q^2 and 4 high q^2 bins
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$: *BR*, *F*_L, *A_{FB}*, *S*₃, *S*₄, *S*₅, *S*₇, *S*₈, *S*₉ in 5 low *q*² and 2 high *q*² bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins
- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$: BR, A_{FB}^{ℓ} , A_{FB}^{h} , $A_{FB}^{\ell h}$, F_L in the high q^2 bin

Computations performed using **SuperIso** public program

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
			0000		
Single opera	tor fits				

Comparison of one-operator NP fits:

T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838, updated with the latest results

Only $R_{\kappa^{(*)}}, B_{s,d} \rightarrow \mu^+ \mu^-$ $(\chi^2_{\rm SM} = 34.25)$					
	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$		
δC9	-2.00 ± 5.00	34.1	0.4 σ		
δC_9^e	0.83 ± 0.21	14.5	4.4σ		
δC_9^{μ}	-0.80 ± 0.21	15.4	4.3σ		
δC_{10}	0.43 ± 0.24	30.6	1.9σ		
δC_{10}^e	-0.81 ± 0.19	12.3	4.7σ		
δC_{10}^{μ}	0.66 ± 0.15	10.3	4.9σ		
δC_{LL}^e	0.43 ± 0.11	13.3	4.6σ		
$\delta C^{\mu}_{\rm LL}$	-0.39 ± 0.08	10.1	4.9σ		

 $\delta {\it C}^{\ell}_{\rm LL}$ basis corresponds to $\delta {\it C}^{\ell}_{\rm 9} = - \delta {\it C}^{\ell}_{\rm 10}.$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
			0000		
Single operat	tor fits				

Comparison of one-operator NP fits:

T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838, updated with the latest results

Only $R_{\kappa^{(*)}}, B_{s,d} \rightarrow \mu^+ \mu^-$ $(\chi^2_{\rm SM} = 34.25)$					
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\operatorname{SM}}$		
δC9	-2.00 ± 5.00	34.1	0.4 σ		
δC_9^e	0.83 ± 0.21	14.5	4.4σ		
δC_9^{μ}	-0.80 ± 0.21	15.4	4.3σ		
δC_{10}	0.43 ± 0.24	30.6	1.9σ		
δC_{10}^e	-0.81 ± 0.19	12.3	4.7σ		
δC_{10}^{μ}	0.66 ± 0.15	10.3	4.9σ		
δC_{LL}^e	0.43 ± 0.11	13.3	4.6σ		
$\delta C^{\mu}_{\rm LL}$	-0.39 ± 0.08	10.1	4.9σ		

All observables except $R_{K^{(*)}}, B_{s,d} ightarrow \mu^+ \mu^-$						
$(\chi^2_{\rm SM} = 221.8)$						
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\operatorname{SM}}$			
δC_9	-0.95 ± 0.13	185.1	6.1σ			
δC_9^e	0.70 ± 0.60	220.5	1.1σ			
δC_9^{μ}	-0.96 ± 0.13	182.8	6.2σ			
δC_{10}	0.29 ± 0.21	219.8	1.4σ			
δC_{10}^e	-0.60 ± 0.50	220.6	1.1σ			
δC_{10}^{μ}	0.35 ± 0.20	218.7	1.8σ			
δC_{LL}^{e}	0.34 ± 0.29	220.9	0.9 <i>o</i>			
$\delta C^{\mu}_{\rm LL}$	-0.64 ± 0.13	195.0	5.2σ			

 $\delta {\it C}^{\ell}_{\rm LL}$ basis corresponds to $\delta {\it C}^{\ell}_{\rm 9} = - \delta {\it C}^{\ell}_{\rm 10}.$

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
			0000		
Single operate	or fits				

Comparison of one-operator NP fits:

T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838, updated with the latest results

	Only $R_{K^{(*)}}, B_{s,d}$				All ob	servables except R_{K}		$\rightarrow \mu^+\mu^-$		All observa		
	$(\chi^2_{\rm SM} = 34$			ļ		$(\chi^2_{SM} = 22)$				$(\chi^2_{\rm SM} = 25)$		
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\operatorname{SM}}$	J		b.f. value	$\chi^2_{\rm min}$	Pull _{SM}		b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\operatorname{SM}}$
δC_9	-2.00 ± 5.00	34.1	0.4 <i>o</i>]	δC_9	-0.95 ± 0.13	185.1	6.1σ	δC_9	-0.93 ± 0.13	218.4	5.9σ
δC_9^e	0.83 ± 0.21	14.5	4.4σ		δC_9^e	0.70 ± 0.60	220.5	1.1σ	δC_9^e	0.82 ± 0.19	232.3	4.6σ
δC_9^{μ}	-0.80 ± 0.21	15.4	4.3σ		δC_9^{μ}	-0.96 ± 0.13	182.8	6 .2 <i>σ</i>	δC_9^{μ}	-0.90 ± 0.11	197.7	7.5σ
δC_{10}	0.43 ± 0.24	30.6	1.9σ]	δC_{10}	0.29 ± 0.21	219.8	1.4σ	δC_{10}	0.27 ± 0.17	250.5	1.7σ
δC_{10}^e	-0.81 ± 0.19	12.3	4.7σ		δC_{10}^e	-0.60 ± 0.50	220.6	1.1σ	δC_{10}^e	-0.78 ± 0.18	230.4	4.8σ
δC_{10}^{μ}	0.66 ± 0.15	10.3	4.9σ		δC_{10}^{μ}	0.35 ± 0.20	218.7	1.8σ	δC_{10}^{μ}	0.54 ± 0.12	231.5	4.7σ
δC_{LL}^e	0.43 ± 0.11	13.3	4.6σ		δC_{LL}^{e}	0.34 ± 0.29	220.9	0.9 <i>o</i>	δC_{LL}^e	0.42 ± 0.10	231.2	4.7σ
$\delta C^{\mu}_{ m LL}$	-0.39 ± 0.08	10.1	4.9σ		$\delta C^{\mu}_{\rm LL}$	-0.64 ± 0.13	195.0	5.2σ	$\delta C^{\mu}_{\rm LL}$	-0.46 ± 0.07	208.2	6 .7σ
\downarrow						\downarrow				\downarrow		

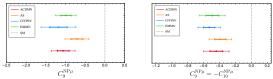
Dependent on the assumptions on the non-factorisable power corrections

 $\delta {\it C}_{\rm LL}^\ell$ basis corresponds to $\delta {\it C}_{\rm 9}^\ell = - \delta {\it C}_{\rm 10}^\ell.$

- Compatible NP scenarios between different sets
- Hierarchy of the preferred NP scenarios have remained the same with updated data $(C_9^{\mu}$ followed by $C_{LL}^{\mu})$
- ullet Significance increased by more than 2σ in the preferred scenarios compared to 2019

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
			0000		
Comparison	between the groups				

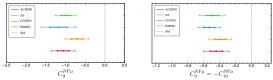
One dimensional fits:



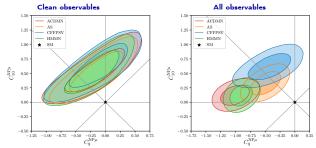
ACDMN: M. Algueró, B. Capdevila, S. Descotes-Genon, J. Matias, M. Novoa-Brunet	arXiv:2104.08921
AS: W. Altmannshofer, P. Stangl	arXiv:2103.13370
CFFPSV: M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini, M. Valli	arXiv:2011.01212
HMMN: T. Hurth, F. Mahmoudi, D. Martínez-Santos, S. Neshatpour	arXiv:2104.10058

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
			0000		
Comparison	between the groups				

One dimensional fits:



Two dimensional fits:



Nazila Mahmoudi

PPC 2022 - Washington Univ. - St. Louis, 9 June 2022

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
000	00000	000000000000	0000	000	00

NP scenarios

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
				● 00	
New physics	scenarios				

Global fits: New physics is likely to appear in C_9 :

$$O_9=rac{e^2}{(4\pi)^2}(ar{s}\gamma^\mu b_L)(ar{\ell}\gamma_\mu\ell)$$

It can also affect C'_9 and C_{10} in a much lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

 \rightarrow Need for tree level diagrams...

Mainstream scenarios:

- Z' bosons
- leptoquarks
- composite models

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
				● 00	
New physics	scenarios				

Global fits: New physics is likely to appear in C_9 :

$$O_9=rac{e^2}{(4\pi)^2}(ar{s}\gamma^\mu b_L)(ar{\ell}\gamma_\mu\ell)$$

It can also affect C'_9 and C_{10} in a much lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

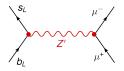
 \rightarrow Need for tree level diagrams...

Mainstream scenarios:

- Z' bosons
- leptoquarks
- composite models

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
				000	
Mainstream	scenarios				

- Z' obvious candidate to generate the O_9 operator:
 - Flavour-changing couplings to left-handed quarks
 - Vector-like couplings to leptons
 - Flavour violation or non-universality in the lepton sector



Leptoquarks:

- t-channel diagrams
- Different possible representations, can be scalar (spin 0) or vector (spin 1)
- Cannot alter only C_9 , but both C_9 and $C_{10} (= -C_9)$
- Cannot be lepton flavour non-universal and conserve lepton number simultaneously

Composite models:

- Neutral resonance ρ_{μ} coupling to the muons via composite elementary mixing
- requires some compositeness for the muons
- can allow for lepton flavour violating couplings
- constrained by the LEP Z-width measurements and B_s B
 s
 mixing

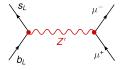
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
				000	
Mainstream	scenarios				

- Z' obvious candidate to generate the O_9 operator:
 - Flavour-changing couplings to left-handed quarks
 - Vector-like couplings to leptons
 - Flavour violation or non-universality in the lepton sector

- t-channel diagrams
- Different possible representations, can be scalar (spin 0) or vector (spin 1)
- Cannot alter only C_9 , but both C_9 and $C_{10} (= -C_9)$
- Cannot be lepton flavour non-universal and conserve lepton number simultaneously

Composite models:

- Neutral resonance ρ_{μ} coupling to the muons via composite elementary mixing
- requires some compositeness for the muons
- can allow for lepton flavour violating couplings
- constrained by the LEP Z-width measurements and B_s B
 _s mixing



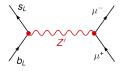
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
				000	
Mainstream	scenarios				

- Z^\prime obvious candidate to generate the $\mathit{O}_{\mathbf{9}}$ operator:
 - Flavour-changing couplings to left-handed quarks
 - Vector-like couplings to leptons
 - Flavour violation or non-universality in the lepton sector

- t-channel diagrams
- Different possible representations, can be scalar (spin 0) or vector (spin 1)
- Cannot alter only C_9 , but both C_9 and $C_{10} (= -C_9)$
- Cannot be lepton flavour non-universal and conserve lepton number simultaneously

Composite models:

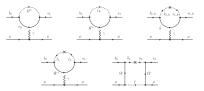
- Neutral resonance ρ_{μ} coupling to the muons via composite elementary mixing
- requires some compositeness for the muons
- can allow for lepton flavour violating couplings
- constrained by the LEP Z-width measurements and B_s B
 _s mixing



Nazila Mahmoudi

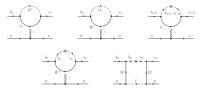
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
				000	
MSSM and (C ₉				

Contributions to C_9 can come from Z and photon penguins, and box diagrams

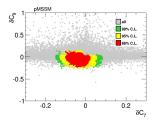


Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
				000	
MSSM and	Cg				

Contributions to C_9 can come from Z and photon penguins, and box diagrams



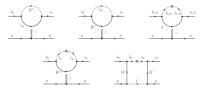
PMSSM:



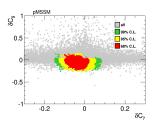
FM, S. Neshatpour, J. Virto, Eur. Phys. J. C74 (2014) no.6, 2927

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
				000	
MSSM and	Cg				

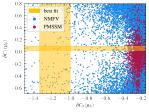
Contributions to C_9 can come from Z and photon penguins, and box diagrams



PMSSM:

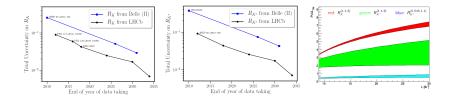


FM, S. Neshatpour, J. Virto, Eur. Phys. J. C74 (2014) no.6, 2927



M.A. Boussejra, FM, G. Uhlrich, arXiv:2201.04659

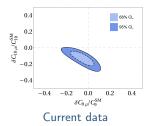
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					•0
Future prosp	ects				



Predictions of Pull_{SM} for the fit to δC_9^{μ} , δC_{10}^{μ} and δC_{LL}^{μ} :

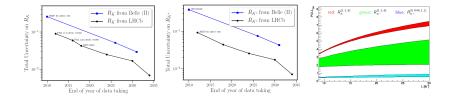
$Pull_{\mathrm{SM}}$ with $R_{\mathcal{K}^{(*)}}$ and $\mathrm{BR}(B_s o \mu^+ \mu^-)$ prospects					
LHCb lum. 18 fb ⁻¹ 50 fb ⁻¹ 300 fb ⁻¹					
δC_9^{μ}	6.5σ	14.7σ	21.9σ		
δC^{μ}_{10}	7.1σ	16.6σ	25.1σ		
δC^{μ}_{LL}	7.5σ	17.7σ	26.6σ		

For all three scenarios, NP significance will be larger than 6σ already with 18 fb⁻¹!



T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838

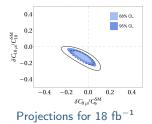
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Future prosp	ects				



Predictions of Pull_{SM} for the fit to δC_9^{μ} , δC_{10}^{μ} and δC_{LL}^{μ} :

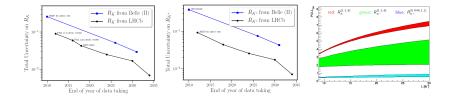
$Pull_{\mathrm{SM}}$ with $R_{K^{(*)}}$ and $\mathrm{BR}(B_s o \mu^+ \mu^-)$ prospects						
LHCb lum. 18 fb ⁻¹ 50 fb ⁻¹ 300 fb						
δC_9^{μ}	6.5σ	14.7σ	21.9σ			
δC^{μ}_{10}	7.1σ	16.6σ	25.1σ			
δC^{μ}_{LL}	7.5σ	17.7σ	26.6σ			

For all three scenarios, NP significance will be larger than 6σ already with 18 fb⁻¹!



T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838

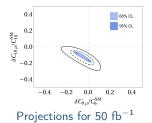
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Future prosp	ects				



Predictions of Pull_{SM} for the fit to δC_9^{μ} , δC_{10}^{μ} and δC_{LL}^{μ} :

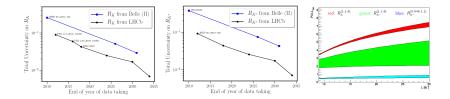
$Pull_{\mathrm{SM}}$ with $R_{K^{(*)}}$ and $\mathrm{BR}(B_s o \mu^+ \mu^-)$ prospects						
LHCb lum. 18 fb ⁻¹ 50 fb ⁻¹ 300 fb						
δC_9^{μ}	6.5σ	14.7σ	21.9σ			
δC^{μ}_{10}	7.1σ	16.6σ	25.1σ			
δC^{μ}_{LL}	7.5σ	17.7σ	26.6σ			

For all three scenarios, NP significance will be larger than 6σ already with 18 fb⁻¹!



T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838

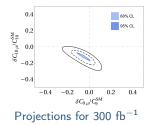
Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Future prosp	ects				



Predictions of Pull_{SM} for the fit to δC_9^{μ} , δC_{10}^{μ} and δC_{LL}^{μ} :

Pull _{SM} with $R_{K^{(*)}}$ and BR($B_s \rightarrow \mu^+ \mu^-$) prospects					
LHCb lum.	300 fb ⁻¹				
δC_9^{μ}	6.5σ	14.7σ	21.9σ		
δC^{μ}_{10}	7.1σ	16.6σ	25.1σ		
δC^{μ}_{LL}	7.5σ	17.7σ	26.6σ		

For all three scenarios, NP significance will be larger than 6σ already with 18 fb⁻¹!



T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding r	emarks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone?
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding r	emarks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone?
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding r	emarks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? ×NO!
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding r	emarks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?

Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?

Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? ×NO!
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? × NO!

Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? X NO!

Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? **XNO!**
- Unknown pieces in the theoretical calculations alone? XNO!
 - Combination of above?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? X NO!
 - Combination of above? POSSIBLE

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? X NO!

Combination of above? POSSIBLE

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? X NO!

Combination of above? POSSIBLE

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? XNO!

Combination of above? POSSIBLE

Is Nature teasing us?

New Physics option? POSSIBLE

Or teaching us?

Introduction	Theoretical framework	Observables	Global fits	NP scenarios	Conclusion
					00
Concluding re	marks				

 \rightarrow growing with time both in statistical significance and in internal consistency

Could they be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? XNO!

Combination of above? POSSIBLE

Is Nature teasing us?

New Physics option? POSSIBLE

Or teaching us?

The next round of data will hopefully give us the verdict!

Nazila Mahmoudi

PPC 2022 - Washington Univ. - St. Louis, 9 June 2022

Thank you for your attention!

Backup

Set: real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients, 20 degrees of freedom

All observables with $\chi^2_{ m SM}=$ 225.8							
	$\chi^2_{\rm min} = 151.6; {\rm Pull}_{\rm SM} = 5.5(5.6)\sigma$						
δ	C7		δ <i>C</i> ₈				
0.05 =	± 0.03	-0.7	0 ± 0.40				
δ	C ′		$\delta C'_8$				
-0.01	\pm 0.02	0.00	0 ± 0.80				
δC_9^{μ}	δC_9^e	δC^{μ}_{10}	δC_{10}^e				
-1.16 ± 0.17	-6.70 ± 1.20	0.20 ± 0.21	degenerate w/ $C_{10}^{\prime e}$				
$\delta C_{9}^{\prime \mu}$	$\delta C_9'^e$	$\delta C_{10}^{\prime\mu}$	$\delta C_{10}^{\prime e}$				
0.09 ± 0.34	1.90 ± 1.50	-0.12 ± 0.20	degenerate w/ C_{10}^e				
$C^{\mu}_{Q_1}$	$C^{e}_{Q_{1}}$	$C^{\mu}_{Q_2}$	$C^{e}_{Q_2}$				
$ \begin{array}{c c} 0.04 \pm 0.10 & -1.50 \pm 1.50 \\ [-0.08 \pm 0.11] & [-0.20 \pm 1.60] \end{array} $		$\begin{array}{c} -0.09 \pm 0.10 \\ [-0.11 \pm 0.10] \end{array}$	$\begin{array}{c} -4.10 \pm 1.5 \\ [4.50 \pm 1.5] \end{array}$				
$\begin{tabular}{ c c c c }\hline & & & & & & & \\ \hline & & & & & & & & \\ C_{Q_1}^{\prime \mu} & & & & & & & \\ 0.15 \pm 0.10 & & & & & & & \\ 0.02 \pm 0.12] & & & & & & & & & \\ \hline & & & & & & & & &$		$C_{Q_2}^{\prime\mu}$	$C_{Q_2}^{\prime e}$				
		$\substack{-0.14 \pm 0.11 \\ [-0.16 \pm 0.10]}$	$\begin{array}{c} -4.20 \pm 1.2 \\ [4.40 \pm 1.2] \end{array}$				

- No real improvement in the fits when going beyond the C_{q}^{μ} case
- Many parameters are weakly constrained at the moment
- Effective d.o.f is (19) leading to 5.6σ significance

Nazila Mahmoudi

PPC 2022 - Washington Univ. - St. Louis, 9 June 2022

$\mathsf{Pull}_{\mathrm{SM}}$ of 1, 2, 6, 10 and 20 dimensional fit:

Set of WC	param.	$\chi^2_{\rm min}$	$Pull_{\mathrm{SM}}$	Improvement
SM	0	225.8	-	-
C_9^μ	1	168.6	7.6σ	7.6σ
$C_{9}^{\mu}, C_{10}^{\mu}$	2	167.5	7.3σ	1.0σ
$C_7, C_8, C_9^{(e,\mu)}, C_{10}^{(e,\mu)}$	6	158.0	7.1σ	2.0σ
All non-primed WC	10	157.2	6.5σ	0.1σ
All WC (incl. primed)	20 (19)	151.6	$5.5(5.6)\sigma$	0.2 (0.3)σ

T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838

The "All non-primed WC" includes in addition to the previous row, the scalar and pseudoscalar Wilson coefficients.

The last row also includes the chirality-flipped counterparts of the Wilson coefficients.

In the last column the significance of improvement of the fit compared to the scenario of the previous row is given.

The number in parentheses corresponds to the effective degrees of freedom (19).