Introduction to Optics Design

G. Sterbini, BE-ABP-INC, CERN

6-18 November 2022, CAS, Sevrier, France Handout summary on arxiv.org

```
guido.sterbini@cern.ch
```


Introduction to Optics Design

(1) Introduction
(2) Single Particle

- Twiss parameters
- CS invariant
- CO, D and ξ
(3) Ensembles
- Beam emittance
- Matched distribution

4) MAD-X

- MAD-X syntax
- "Hello World!"

Introduction to Optics Design

Goal

The aim of the "Introduction to Optics Design" lecture is three-fold:

- to recall the matrix formalism applied to Linear Optics,
- to use the matrix formalism to perform Linear Optics Design,
- to break the ice for the concepts that will be generalized during the next days.

Theory of the Alternating-Gradient Synchrotron ${ }^{*+}$

E. D. Courant and H. S. Siyder
Brookhaven National Laboratory, Upton, New York

The equations of motion of the particles in a synchrotron in which the field gradient index

$$
n=-(r / B) \partial B / \partial r
$$

varies along the equilibrium orbit are examined on the basis of the linear approximation. It is shown that if n alternates rapidly between large positive and large negative values, the stability of both radial and vertical oscillations can be greatly increased compared to conventional accelerators in which n is azimuthally constant and must lie between 0 and 1 . Thus aperture requirements are reduced. For practical designs, the improvement is limited by the effects of constructional errors; these lead to resonance excitation of oscillations and consequent instability if $2 \nu_{x}$ or $2 \nu_{z}$ or $\nu_{x}+\nu_{z}$ is integral, where ν_{x} and ν_{z} are the frequencies of horizontal and vertical betatron oscillations, measured in units of the frequency of revolution.

64-years anniversary of the seminal paper of linear optics.

G. Sterbini Introduction to Optics Design

References II

A list ${ }^{1}$ of books presenting Linear Optics (and much more).

${ }^{1}$ Very incomplete! Apologies for the omissions.

Alternating-gradient as Beam Dynamics foundations

The alternating-gradient was a breakthrough in the history of accelerators based on linear algebra! It is still the very first step for any new technology,

nature
 International journal of science

Letter Published: 05 November 2014
High-efficiency acceleration of an electron beam in a plasma wakefield accelerator
M. Litos ${ }^{\text {ma/ }}$, E. Adli, W. An, C. I. Clarke, C. E. Clayton, S. Corde, J. P. Delahaye, R. J. England, A. S. Fisher, J. Frederico, S. Gessner, S. Z. Green, M. J. Hogan, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, N. Vafaei-Najafabadi, D. Walz, G. White, Z. Wu, V. Yakimenko \& G. Yocky

Nature 515, 92-95 (06 November 2014) Download Citation $\underline{\downarrow}$

(b)
and for facing the non-linear problems that you will discuss during the following lectures and your professional life.

The three ways

One can consider three typical approaches to introduce the linear optics:

- solving the equation of motion (the historical one),
- using Hamiltonian formalism (opening the horizon to the non-linear optics, see later Lectures),
- using the linear matrices (natural choice for the linear optics design).

Our reference system I

To describe the motion of a particle in an optics channel, as usual, we fix a coordinate system to define the status of the particle at a given instant t_{1} and a set of laws to transform the coordinates of the system from t_{1} to a new instant t_{2}.

Coordinates

- It is convenient to define the motion along a reference trajectory of the 3D phase space (reference particle trajectory/orbit), so to take into account only the variations along that trajectory (Frenet-Serret frame).
- In addition, it is convenient to replace as independent variable the time, t, with the longitudinal position, s, along the reference trajectory/orbit.
- The natural choice for the variables are $\left(x, \frac{p_{x}}{p_{0}}, y, \frac{p_{y}}{p_{0}}, z, \frac{p_{z}}{p_{0}}\right)$ (phase-space, see Hamiltonian approach). p_{0} is the amplitude of the reference particle momentum.
- Assuming $p_{s} \approx p_{0}$ one can consider also the trace-space $\left(x, x^{\prime}=\frac{d x}{d s}, y, y^{\prime}=\frac{d y}{d s}, z, \frac{\Delta p}{p_{0}}\right)$ (see equation of motion approach).

Linear transformations

We have established phase space $\left(x, \frac{p_{x}}{p_{0}}, y, \frac{p_{y}}{p_{0}}, z, \frac{p_{z}}{p_{0}}\right)$, now we need to study the particle evolution in there. We assume linear transformation. A system is linear IFF the evolution from the coordinates U to V can be expressed as

$$
V=M U
$$

where M is a square matrix and does not depend on U.

BUT we are interested only on a special set of linear transformation: the so called symplectic linear transformations, that is the ones associated to a simplectic matrix.

Bi-linear transformations

To introduce symplectic matrix we need a short digression on bi-linear transformations.

Let us define the bi-linear transformation F as

$$
\begin{equation*}
V^{T} F U . \tag{1}
\end{equation*}
$$

This is a function of two vectors (e.g. U and V).
Let consider, for simplicity, the 1D case, that is, $U=\left(u_{a}, u_{b}\right)^{T}$ and $V=\left(v_{a}, v_{b}\right)^{T}$.

EXAMPLE: orthogonal matrix

Assuming

$$
F=I=\left(\begin{array}{ll}
1 & 0 \tag{2}\\
0 & 1
\end{array}\right),
$$

the bilinear transformation $/$ is the dot-product between $V=\left(v_{a}, v_{b}\right)^{T}$ and $U=\left(u_{a}, u_{b}\right)^{T}$:

$$
V^{T} \underbrace{I}_{F} U=v_{a} u_{a}+v_{b} u_{b} .
$$

A matrix M preserves the bi-linear transformation I (then the projections) IFF

$$
\underbrace{V^{T} M^{T}}_{(M V)^{T}} / M U=V^{T}\left|U \rightarrow M^{T}\right| M=I,
$$

then M is called orthogonal matrix.

EXAMPLE: symplectic matrix

Assuming

$$
F=\Omega=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

the bi-linear transformation Ω is proportional to the amplitude of the cross-product between $V=\left(v_{a}, v_{b}\right)^{T}$ and $U=\left(u_{a}, u_{b}\right)^{T}$:

$$
V^{T} \underbrace{\Omega}_{F} U=v_{a} u_{b}-v_{b} u_{a} .
$$

that is proportional to the area defined by the vectors. A matrix M preserves the bi-linear transformation Ω (related to the cross-product) IFF

$$
V^{T} M^{T} \Omega M U=V^{T} \Omega U \rightarrow M^{T} \Omega M=\Omega
$$

then M is called symplectic matrix.

Figure 1: Identity transformation.

EXAMPLE: visualise transformations.

Figure 2: Orthogonal transformation (dot-product preserved).

EXAMPLE: visualise transformations.

Figure 3: Symplectic transformation (cross-product preserved).

Matrix symplecticity in nD

From 1D this can generalized to $n \mathrm{D}$ and Ω becomes a $2 n \times 2 n$ matrix:

$$
\Omega=\left(\begin{array}{ccccc}
0 & 1 & & & 0 \tag{3}\\
-1 & 0 & & & \\
& & \ddots & & \\
& & & 0 & 1 \\
0 & & -1 & 0
\end{array}\right)
$$

Example of 2D symplectic matrix:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Domino effect

Properties of symplectic matrices

- If M_{1} and M_{2} then $M=M_{1} M_{2}$ is symplectic too.
- If M is symplectic then M^{T} is symplectic.
- Every symplectic matrix is invertible

$$
\begin{equation*}
M^{-1}=\Omega^{-1} M^{\top} \Omega \tag{4}
\end{equation*}
$$

and M^{-1} is symplectic.

- A necessary condition for M to be symplectic is that $\operatorname{det}(M)=+1$. This condition is necessary and sufficient for the 1D case. We will consider 1D case.
- There are symplectic matrices that are defective, that is it cannot be diagonalized, e.g., $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Symplectic matrix and accelerators

Please have a look on this generating set of the symplectic group

$$
\underbrace{\left(\begin{array}{cc}
G & 0 \\
0 & \frac{1}{G}
\end{array}\right)}_{\text {thin telescope }}, \underbrace{\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)}_{\text {drift }}, \underbrace{\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)}_{\text {thin quad }}
$$

Among the above matrices you can recognise the one of a L-long drift and thin quadrupole with focal length f.

Conveniently combining drifts and thin quadrupole one can find back the well known matrices for the thick elements.

EXAMPLE: a thick quadrupole I

One can derive the transfer matrix of a thick quadrupole of length L by and normalized gradient K_{1} by considering the following limit

$$
\begin{gathered}
\lim _{n}\left[\left(\begin{array}{cc}
1 & 0 \\
-\frac{K 1 L}{n} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{L}{n} \\
0 & 1
\end{array}\right)\right]^{n}= \\
\left(\begin{array}{cc}
\cos (\sqrt{\mathrm{K} 1} L) & \frac{\sin (\sqrt{\mathrm{K} 1} L}{\sqrt{\mathrm{K} 1}} \\
-\sqrt{\mathrm{K} 1} \sin (\sqrt{\mathrm{~K} 1} L) & \cos (\sqrt{\mathrm{K} 1} L)
\end{array}\right)
\end{gathered}
$$

Therefore we now have a correspondence between elements along our machine (drift, bending, quadrupoles, solenoids,...) and symplectic matrices.

Introduction Single Particle Ensembles MAD-X

EXAMPLE: a thick quadrupole II

To compute the above limit and, in general, for symbolic computations one can profit of the available symbolic computation tools (e.g., Mathematica ${ }^{\text {TM }}$).

Code

```
MD[L_] = {{1, L}, {0, 1}}
{{1,L}, {0, 1}}
MQ[KL_] = {{1, 0}, {-KL, 1}}
{{1, 0}, {-KL, 1}}
FullSimplify[Limit[MatrixPower[MQ[K1L/n].MD[L/n], n], n -> m, Assumptions { { K1 > 0, L > 0}]]
{{\operatorname{Cos[\sqrt{}{K1}L],}\frac{\operatorname{Sin}[\sqrt{}{\textrm{K}1}\textrm{L}]}{\sqrt{}{\textrm{K}1}}},{-\sqrt{}{\textrm{K}1}\operatorname{Sin}[\sqrt{}{\textrm{K}1}\textrm{L}],\operatorname{Cos}[\sqrt{}{\textrm{K}1}\textrm{L}]}}
FullSimplify[Limit[MatrixPower[MQ[-K1L/n].MD[L/n], n], n >> m, Assumptions }->{K1>0,L>0}]
```


Tracking in a linear system

Given a sequence of elements $M_{1}, M_{2}, \ldots M_{k}$ (the lattice), the evolution of the coordinate, X_{n}, along the lattice for a given particle can be obtained as

$$
\begin{equation*}
X_{n}=M_{n} \ldots M_{1} X_{0} \text { for } n \geq 1 \tag{5}
\end{equation*}
$$

The transport of the particle along the lattice is called tracking. The tracking on a linear system is trivial and boring. . .

In the following we will decompose the trajectory of the single particle in term of invariant of the motion and properties of the lattice, and via those properties we will describe the statistical evolution of an ensemble of particles.

So instead of tracking an ensemble we will concentrate to solve the properties of the lattice.

Starting a long journey...

Voyager 1 is the Man-built object farther away from Earth ≈ 20 light-hours.

Periodic lattice and stability I

We study now the motion of the particles in a periodic lattice, that is a lattice constituted by an indefinite repetition of the same basic C-long period $M_{\text {OTM }}$, the so-called One-Turn-Map:

$$
M_{\text {OTM }}\left(s_{0}\right)=M_{\text {OTM }}\left(s_{0}+C\right)
$$

From Eq. 5 we get

$$
X_{n}=M_{O T M}^{n} X_{0}
$$

and we study the property of $M_{\text {OTM }}$ to have stable motion in the lattice, that is

$$
\left|X_{n}\right|<|\hat{X}| \text { for all } X_{0} \text { and } n
$$

In other words, we need to study the if all the elements of the $M_{O T M}^{n}$ stay bounded.

Periodic lattice and stability II

If $M_{\text {OtM }}$ can be expressed as a Diagonal-factorization

$$
M_{\text {OTM }}=P \underbrace{\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)}_{\mathrm{D}} P^{-1},
$$

after m-turns, it yields that

$$
M_{O T M}^{m}=\underbrace{P D P^{-1}}_{1} \times \underbrace{P D P^{-1}}_{2} \times \cdots \times \underbrace{P D P^{-1}}_{m}=P D^{m} P^{-1} .
$$

Therefore the stability depends only on the eigenvalues of $M_{\text {OTM }}$.
Note that the if V is an eigenvector also $k V, k \neq 0$ is an eigenvector. Therefore P is not uniquely defined: we chose it such that $\operatorname{det}(P)=-i$ and $P_{11}=P_{12}$.

Periodic lattice and stability III

- For a real matrix the eigenvalues, if complex, appear in complex conjugate pairs.
- For a symplectic matrix MOtM

$$
\prod_{i}^{2 n} \lambda_{i}=1
$$

where λ_{i} are the eigenvalues of $M_{\text {OTM }}$.

- Therefore for 2×2 symplectic matrix the eigenvalues can be written as $\lambda_{1}=e^{i \mu}$ and $\lambda_{2}=e^{-i \mu} \rightarrow D^{m}=D(m \mu)$.
If μ is real then the motion is stable we can define the fractional tune of the periodic lattice as $\frac{\mu}{2 \pi}$.

R-factorization of the $M_{\text {OTM }}$ I

The Diagonal-factorization is convenient to check the stability but not to visualize the turn-by-turn phase space evolution of the particle. To do that it is convenient to consider the Rotation-factorization

$$
M_{\text {OTM }}=\bar{P} \underbrace{\left(\begin{array}{cc}
\cos \mu & \sin \mu \tag{6}\\
-\sin \mu & \cos \mu
\end{array}\right)}_{\mathrm{R}(\mu) \text { is orthogonal }} \bar{P}^{-1}
$$

This is very important since implies that the МОтМ is similar to a rotation in phase space (see Hannes and Yannis's lectures).

R-factorization of the $M_{\text {OTM }}$ II

To go from Diagonal to Rotation-factorization we note that

$$
\underbrace{\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)}_{R(\mu)}=\underbrace{\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right)}_{S^{-1}} \underbrace{\left(\begin{array}{cc}
e^{i \mu} & 0 \\
0 & e^{-i \mu}
\end{array}\right)}_{D(\mu)} \underbrace{\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)}_{S}
$$

and therefore

$$
\begin{gathered}
R^{m}=R(m \mu), \\
M_{\text {OTM }}=\underbrace{P S}_{\bar{P}} \underbrace{S^{-1} D S}_{R} \underbrace{S^{-1} P^{-1}}_{\bar{P}-1}
\end{gathered}
$$

We note that $\operatorname{det}(\bar{P})=1$.

Twiss-factorization of MOTM I

We note that

$$
R(\mu)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos \mu+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \sin \mu
$$

yielding the, so called, Twiss-factorization

$$
M_{\text {OTM }}=\underbrace{\bar{P} I \bar{P}^{-1}}_{I} \cos \mu+\underbrace{\bar{P} \Omega \bar{P}^{-1}}_{J} \sin \mu
$$

Where J has three properties: $\operatorname{det}(J)=1, J_{11}=-J_{22}, J_{12}>0$.

Code: J properties

Omega $=\{\{0,1\},\{-1,0\}\} ;$
Pbar $=\{\{\mathrm{m} 11, \mathrm{~m} 12\},\{\mathrm{m} 21, \mathrm{~m} 22\}\}$;
Pbar. Omega. Inverse [Pbar] / . \{-m12 m21 + m11 m22 -> 1\}
$\left\{\left\{-\mathrm{m} 11 \mathrm{~m} 21-\mathrm{m} 12 \mathrm{~m} 22, \mathrm{~m} 11^{2}+\mathrm{m} 12^{2}\right\},\left\{-\mathrm{m} 21^{2}-\mathrm{m} 22^{2}, \mathrm{~m} 11 \mathrm{~m} 21+\mathrm{m} 12 \mathrm{~m} 22\right\}\right\}$

Twiss-factorization of MOTM II

Therefore the following parametric expression has been proposed

$$
J=\left(\begin{array}{cc}
\alpha & \overbrace{\beta}^{>0} \\
-\underbrace{\frac{1+\alpha^{2}}{\beta}}_{\gamma>0} & -\alpha
\end{array}\right)
$$

defining the Twiss parameters of the lattice at the start of the sequence МОтм . It is very important to not that they are not depending on m since

$$
M_{O T M}^{m}=I \cos (m \mu)+J \sin (m \mu)
$$

In other words the Twiss parameters are periodic (compare to Floquet theorem).

Twiss-factorization of Мотм III

From the definition of J follows, $J=\bar{P} \Omega \bar{P}^{-1}$, the one of

$$
\bar{P}=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
0 & \frac{1}{\sqrt{\beta}}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & 1
\end{array}\right)
$$

We note that by choosing $\operatorname{det} P=-i$ we got $\operatorname{det} \bar{P}=1$ that is we expressed M as the product of orthogonal and symplectic matrices.
and

$$
P=\bar{P} S^{-1}=\left(\begin{array}{cc}
\sqrt{\frac{\beta}{2}} & \sqrt{\frac{\beta}{2}} \\
\frac{-\alpha+i}{\sqrt{2 \beta}} & \frac{-\alpha-i}{\sqrt{2 \beta}}
\end{array}\right) \text {. }
$$

Where do we stand?

Given a symplectic $M_{\text {OtM }}(s)$, if diagonalizable, we can study three equivalent periodic problems

- $M_{\text {OtM }}(s)^{m}=P D(m \mu) P^{-1}$,
- $M_{\text {OtM }}(s)^{m}=\bar{P} R(m \mu) \bar{P}^{-1}$,
- $M_{\text {OtM }}(s)^{m}=I \cos (m \mu)+J \sin (m \mu)$.

The previous factorizations allow us to reduce the power of a matrix to an algebric multiplication $(m \mu)$. We expressed P, \bar{P} and J as function of β and α parameters.

\rightarrow IMPORTANT FOR LATTICE STABILITY \leftarrow

Code

From $M_{\text {OTM }}(s)$ compute D (check stability) and P (force $\left.\operatorname{det}(P)=-i, P_{11}=P_{12}\right)$, then $\bar{P}=P S$ and $J=\bar{P} \Omega \bar{P}^{-1}$. You therefore get the fractional tune and the Twiss parameters at s_{0}.

$\operatorname{MOTM}\left(s_{0}\right)$ and $M_{\text {OTM }}\left(s_{1}\right)$

$M_{\text {ОTM }}(s)$ is a function of s : are Q, β and α all s-function?
Given a C-long periodic lattice and two longitudinal positions s_{0} and $s_{1}\left(s_{1}>s_{0}\right)$, the transformation from s_{0} to $s_{1}+C$ can be expressed as

$$
\begin{gathered}
s_{0} \longrightarrow s_{1} \longrightarrow s_{0}+C \longrightarrow s_{1}+C \\
s_{0} \longrightarrow C \\
M_{\text {OTM }}\left(s_{1}\right) M=M M_{\text {OTM }}\left(s_{0}\right)
\end{gathered}
$$

where M is the transformation from s_{0} to s_{1}. This implies

$$
M_{\text {OTM }}\left(s_{1}\right)=M M_{\text {OTM }}\left(s_{0}\right) M^{-1}
$$

\rightarrow the matrices $M_{\text {Отм }}\left(s_{1}\right)$ and $M_{\text {Отм }}\left(s_{2}\right)$ are similar.
\rightarrow same eigenvalues: the $M_{\text {OTM }}$ is s-dependent but the Q is not.

β and α transport I

On the other hand we observe that β and α are s-dependent function and we have:

$$
M_{\text {OTM }}\left(s_{1}\right)=M M_{\text {OTM }}\left(s_{0}\right) M^{-1}=M\left(I \cos \mu+J\left(s_{0}\right) \sin \mu\right) M^{-1}
$$

therefore

$$
\underbrace{\left(\begin{array}{cc}
\alpha\left(s_{1}\right) & \beta\left(s_{1}\right) \\
-\gamma\left(s_{1}\right) & -\alpha\left(s_{1}\right)
\end{array}\right)}_{J\left(s_{1}\right)}=M \underbrace{\left(\begin{array}{cc}
\alpha\left(s_{0}\right) & \beta\left(s_{0}\right) \\
-\gamma\left(s_{0}\right) & -\alpha\left(s_{0}\right)
\end{array}\right)}_{J\left(s_{0}\right)} M^{-1} .
$$

β and α transport II

To simplify from a computational point of view the Eq. 7 we can use the Eq. 4 (inverse of a symplectic matrix) and this yields

$$
\left(\begin{array}{cc}
\alpha\left(s_{1}\right) & \beta\left(s_{1}\right) \\
-\gamma\left(s_{1}\right) & -\alpha\left(s_{1}\right)
\end{array}\right) \Omega^{-1}=M\left(\begin{array}{cc}
\alpha\left(s_{0}\right) & \beta\left(s_{0}\right) \\
-\gamma\left(s_{0}\right) & -\alpha\left(s_{0}\right)
\end{array}\right) \Omega^{-1} M^{T},
$$

that is

$$
\underbrace{\left(\begin{array}{cc}
\beta\left(s_{1}\right) & -\alpha\left(s_{1}\right) \tag{7}\\
-\alpha\left(s_{1}\right) & \gamma\left(s_{1}\right)
\end{array}\right)}_{J\left(s_{1}\right) \Omega^{-1}}=M \underbrace{\left(\begin{array}{cc}
\beta\left(s_{0}\right) & -\alpha\left(s_{0}\right) \\
-\alpha\left(s_{0}\right) & \gamma\left(s_{0}\right)
\end{array}\right)}_{J\left(s_{0}\right) \Omega^{-1}} M^{T} .
$$

EXAMPLE: the β-function in a drift

To compute the Twiss parameters in a drift we can simply apply the previous equation

$$
\left(\begin{array}{cc}
\beta(s) & -\alpha(s) \\
-\alpha(s) & \gamma(s)
\end{array}\right)=\left(\begin{array}{cc}
1 & s \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\beta_{0} & -\alpha_{0} \\
-\alpha_{0} & \gamma_{0}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
s & 1
\end{array}\right)
$$

yielding

$$
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2}
$$

and

$$
\alpha(s)=\alpha_{0}-\gamma_{0} s .
$$

\rightarrow IMPORTANT FOR INSERTIONS \leftarrow

The differential relation between α and β I

In order to see differential relation with the matrix formalism we consider the general ΔM matrix for the infinitesimal offset, Δs,

$$
\Delta M=\left(\begin{array}{cc}
1 & \Delta s \\
-K(s) \Delta s & 1
\end{array}\right)
$$

Note that ΔM is symplectic only for $\Delta s \rightarrow 0$.
Then we have

$$
\underbrace{\left(\begin{array}{cc}
\beta(s+\Delta s) & -\alpha(s+\Delta s) \\
-\alpha(s+\Delta s) & \gamma(s+\Delta s)
\end{array}\right)}_{J(s+\Delta s) \Omega^{-1}}=\Delta M \underbrace{\left(\begin{array}{cc}
\beta(s) & -\alpha(s) \\
-\alpha(s) & \gamma(s)
\end{array}\right)}_{J(s) \Omega^{-1}} \Delta M^{T} .
$$

The differential relation between α and β II

From that we have that

$$
\lim _{\Delta s \rightarrow 0} \frac{J(s+\Delta s)-J(s)}{\Delta s} \Omega^{-1}=\left(\begin{array}{cc}
\beta^{\prime}(s) & -\alpha^{\prime}(s) \\
-\alpha^{\prime}(s) & \gamma^{\prime}(s)
\end{array}\right)
$$

where we used standard notation $\frac{d \cdot}{d s}=\prime^{\prime}$. One gets

$$
\begin{aligned}
& \beta^{\prime}(s)=-2 \alpha(s) \\
& \alpha^{\prime}(s)=-\gamma+K(s) \beta(s)
\end{aligned}
$$

Replacing α and γ in the latter equation with functions of β we get the non-linear differential equation:

$$
\frac{\beta^{\prime \prime} \beta}{2}-\frac{\beta^{\prime 2}}{4}+K \beta^{2}=1
$$

EXAMPLE: from matrices to Hill's equation

Following the notation already introduced

$$
X(s+\Delta s)=\Delta M X(s)
$$

with $X(s)=\left(x(s), \frac{p_{x}(s)}{p_{0}}\right)^{T} \underset{p_{0} \approx p_{s}}{\approx}\left(x(s), x^{\prime}(s)\right)^{T}$, therefore

$$
X^{\prime}(s)=\binom{x^{\prime}(s)}{x^{\prime \prime}(s)}=\lim _{\Delta s \rightarrow 0} \frac{X(s+\Delta s)-X(s)}{\Delta s}=\binom{x^{\prime}(s)}{-K(s) x(s)}
$$

we find back the Hill's equation

$$
x^{\prime \prime}(s)+K(s) x(s)=0 \text {. }
$$

Where do we stand?

- We learnt how to propagate via linear matrices the initial Twiss parameters along the machine.
- We also retrieved several differential relations between α and β, β and K, and X and K : these are, in general, not practical for computations.
- The next question is, moving from the lattice to the particle, is there an invariant of the motion?

Courant-Snyder invariant I

Given a particle with coordinate X we can observe that the quantity

$$
X^{\top} \Omega J^{-1} X
$$

is an invariant of the motion: it is called the Courant-Snyder invariant, $J_{C S}$. In fact from Eq. 7

$$
X_{1}^{T} \Omega J_{1}^{-1} X_{1}=X_{0}^{T} M^{T}\left(M J_{0} \Omega^{-1} M^{T}\right)^{-1} M X_{0}=X_{0}^{T} \Omega J_{0}^{-1} X_{0}
$$

Code: find back the CS invariant in the trace-space

$\mathrm{J}=\{\{\alpha, \beta\},\{-\gamma,-\alpha\}\} ;$
Fullsimplify[\{\{x, $\left.\left.x^{\prime}\right\}\right\} \cdot\{\{0,1\},\{-1,0\}\}$.Inverse[J]. $\left.\left\{\{x\},\left\{x^{\prime}\right\}\right\}\right] / . \beta \gamma-\alpha^{2} \rightarrow 1$ $\left\{\left\{x^{2} \gamma+2 x \alpha x^{\prime}+\beta\left(x^{\prime}\right)^{2}\right\}\right\}$

Courant-Snyder invariant II

In the normalized phase-space, remembering that $X=\bar{P} \tilde{X}$, we have

$$
X^{T} \Omega J^{-1} X=\tilde{X}^{T} \underbrace{\bar{P}^{T} \Omega J^{-1} \bar{P}}_{I} \tilde{X}=\tilde{X}^{T} \tilde{X}
$$

that is the $J_{C S}$ is the square of the circle radius defined by the particle initial condition.
This normalized phase-space is also called action-angle phase space. The particle action J_{H} is defined as $J_{C S} / 2$.

What about the phase $\mu(s)$? ।

What is the $\Delta \mu$ introduced by a linear matrix $M=\left(\begin{array}{cc}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$?
In normalized space the transport from s to $s+\Delta s$ does not change $J_{C S}$ but the angle by $\Delta \mu=\mu(s+\Delta s)-\mu(s)$.

To compute it we move to the normalized phase-space

$$
X(s)=\bar{P}(s) \tilde{X}(s) \text { and } X(s+\Delta s)=\bar{P}(s+\Delta s) \tilde{X}(s)
$$

and from

$$
X(s+\Delta s)=M X(s)
$$

it yields

$$
\tilde{X}(s+\Delta s)=\bar{P}(s+\Delta s)^{-1} M \bar{P}(s) \tilde{X}(s)=\left(\begin{array}{cc}
\cos \Delta \mu & \sin \Delta \mu \\
-\sin \Delta \mu & \cos \Delta \mu
\end{array}\right) \tilde{X}(s)
$$

What about the phase $\mu(s)$? II

That is

$\tan \Delta \mu=\underbrace{\frac{\sin \Delta \mu}{\cos \Delta \mu}}_{\text {It does depend only on } \beta \text { and } \alpha \text { in } s!}=\frac{m_{12}}{m_{11} \beta(s)-m_{12} \alpha(s)}$.

Code: derivation of $\Delta \mu$

Pbar0 $=\left\{\{\sqrt{\beta 0}, 0\},\left\{-\frac{\alpha 0}{\sqrt{\beta 0}}, \frac{1}{\sqrt{\beta 0}}\right\}\right\} ;$
Pbar1 $=\left\{\{\sqrt{\beta 1}, 0\},\left\{-\frac{\alpha 1}{\sqrt{\beta 1}}, \frac{1}{\sqrt{\beta 1}}\right\}\right\} ;$
$M=\{\{m 11, m 12\},\{m 21$, m22 $\}\}$;
FullSimplify[Inverse [Pbar1].M.Pbar0]
$\left\{\left\{\frac{-\mathrm{m} 12 \alpha 0+\mathrm{m} 11 \beta 0}{\sqrt{\beta 0} \sqrt{\beta 1}}, \frac{\mathrm{~m} 12}{\sqrt{\beta 0} \sqrt{\beta 1}}\right\},\left\{\frac{-\mathrm{m} 12 \alpha 0 \alpha 1+\mathrm{m} 11 \alpha 1 \beta 0-\mathrm{m} 22 \alpha 0 \beta 1+\mathrm{m} 21 \beta 0 \beta 1}{\sqrt{\beta 0} \sqrt{\beta 1}}, \frac{\mathrm{~m} 12 \alpha 1+\mathrm{m} 22 \beta 1}{\sqrt{\beta 0} \sqrt{\beta 1}}\right\}\right\}$

$$
\text { If } M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)=\Delta M=\left(\begin{array}{cc}
1 & \Delta s \\
-K(s) \Delta s & 1
\end{array}\right) \text { then one gets }, ~=\mu^{\prime}=\lim _{\Delta s \rightarrow 0} \frac{\tan \Delta \mu}{\Delta s}=\lim _{\Delta s \rightarrow 0} \frac{1}{\beta(s)-\alpha(s) \Delta s}=\frac{1}{\beta(s)}, ~ \$
$$

that is the well know expression

$$
\mu(s)=\int_{s_{0}}^{s} \frac{1}{\beta(\sigma)} d \sigma+\mu\left(s_{0}\right) \text {. }
$$

EXAMPLE 2: Betatron oscillation I

How we describe a betatronic oscillation from s_{1} to s_{2} in terms of Twiss parameters and initial conditions?

It is easy by transforming the vector X in the normalized phase space in s_{1}, moving it from s_{1} to s_{2} in the normalized space (pure rotation of the phase μ_{12}) and back transform it in the original phase space.

EXAMPLE 2: Betatron oscillation II

Code

Pbar1 $=\left\{\{\sqrt{\beta 1}, 0\},\left\{-\frac{\alpha 1}{\sqrt{\beta 1}}, \frac{1}{\sqrt{\beta 1}}\right\}\right\} ;$
$\operatorname{Pbar} 2=\left\{\{\sqrt{\beta 2}, 0\},\left\{-\frac{\alpha 2}{\sqrt{\beta 2}}, \frac{1}{\sqrt{\beta 2}}\right\}\right\} ;$
$R=\{\{\operatorname{Cos}[\phi], \operatorname{Sin}[\phi]\},\{-\operatorname{Sin}[\phi], \operatorname{Cos}[\phi]\}\} ;$

Fullsimplify[Pbar2.R.Inverse[Pbar1]]
$\left\{\left\{\frac{\sqrt{\beta 2}(\operatorname{Cos}[\phi]+\alpha 1 \operatorname{Sin}[\phi])}{\sqrt{\beta 1}}, \sqrt{\beta 1} \sqrt{\beta 2} \operatorname{Sin}[\phi]\right\},\left\{-\frac{(-\alpha 1+\alpha 2) \operatorname{Cos}[\phi]+\operatorname{Sin}[\phi]+\alpha 1 \alpha 2 \operatorname{Sin}[\phi]}{\sqrt{\beta 1} \sqrt{\beta 2}}, \frac{\sqrt{\beta 1}(\operatorname{Cos}[\phi]-\alpha 2 \operatorname{Sin}[\phi])}{\sqrt{\beta 2}}\right\}\right\}$

$$
\begin{aligned}
M & =\bar{P}\left(s_{2}\right) R\left(\mu_{12}\right) \bar{P}\left(s_{1}\right)^{-1}= \\
& =\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu_{12}+\alpha_{1} \sin \mu_{12}\right) & \sqrt{\beta_{1} \beta_{2}} \sin \mu_{12} \\
\frac{\alpha_{1}-\alpha}{\sqrt{\beta_{1} \beta_{2}}} \cos \mu_{12}-\frac{1+\alpha_{1} \alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \sin \mu_{12} & \sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \mu_{12}-\alpha_{2} \sin \mu_{12}\right)
\end{array}\right)
\end{aligned}
$$

EXAMPLE 3: Solution of Hill's equation

How we describe a betatronic oscillation in machine considering a $J_{C S}$ and phase μ_{0} ? This is a special case of the previous one. With the $J_{C S}$ and phase μ_{0} we are already in the normalized phase space, therefore we need only to rotate by $\mu(s)$ and back transform it in the original phase space.

$$
\begin{aligned}
X(s) & =\bar{P}(s)\binom{\sqrt{J_{C S}} \cos \left(\mu+\mu_{0}\right)}{-\sqrt{J_{C S}} \sin \left(\mu+\mu_{0}\right)}= \\
& =\binom{\sqrt{J_{C S} \beta(s)} \cos \left(\mu+\mu_{0}\right)}{-\sqrt{\frac{J_{C S}}{\beta(s)}}\left[\alpha(s) \cos \left(\mu+\mu_{0}\right)+\sin \left(\mu+\mu_{0}\right)\right]}
\end{aligned}
$$

where one recognizes the solutions of the Hill's equation.

Computing the closed orbit

Up to now we assumed that the closed orbit (CO) corresponded to the reference orbit. This is not always true.

Assuming a $M_{\text {OTM }}\left(s_{0}\right)$ and a single thin kick Θ at s_{0} (independent from X_{n}) we can write

$$
X_{n+1}\left(s_{0}\right)=M_{\text {ОтМ }}\left(s_{0}\right) X_{n}\left(s_{0}\right)+\Theta
$$

In the 1 D case Θ can represent a kick of a dipole correction or misalignment of a quadrupole $\left(\Theta=(0, \theta)^{T}\right)$. The closed orbit solution can be retrieved imposing $V_{n+1}=V_{n}$ (fixed point), yielding

$$
X_{n}\left(s_{0}\right)=\left(I-M_{\text {OTM }}\left(s_{0}\right)\right)^{-1} \Theta\left(s_{0}\right)
$$

Please note that the CO is discontinuous at s_{0} so the previous formula refers to the CO after the kick. In presence of multiple $\Theta\left(s_{i}\right)$ one can sum the single contributions along s.

EXAMPLE: from the CO matrix to the CO formula

Code: closed orbit formula

$J=\left\{\{\alpha 1, \beta 1\},\left\{-\frac{1+\alpha 1^{2}}{\beta 1},-\alpha 1\right\}\right\} ;$
$\mathrm{MCO}=$ Fullsimplify[Inverse[IdentityMatrix[2]-(IdentityMatrix[2] $\operatorname{Cos}[2 \pi Q]+J \operatorname{Sin}[2 \pi Q])]]$
$\left\{\left\{\frac{1}{2}(1+\alpha 1 \operatorname{Cot}[\pi \mathrm{Q}]), \frac{1}{2} \beta 1 \operatorname{Cot}[\pi \mathrm{Q}]\right\},\left\{-\frac{\left(1+\alpha 1^{2}\right) \operatorname{Cot}[\pi \mathrm{Q}]}{2 \beta 1}, \frac{1}{2}(1-\alpha 1 \operatorname{Cot}[\pi \mathrm{Q}])\right\}\right\}$
$x 0=$ Fullsimplify [MCO. $\{\{0\},\{\theta 1\}\}]$
$\left\{\left\{\frac{1}{2} \beta 1 \theta 1 \operatorname{Cot}[\pi \mathrm{Q}]\right\},\left\{\frac{1}{2}(\theta 1-\alpha 1 \theta 1 \operatorname{Cot}[\pi \mathrm{Q}])\right\}\right\}$
$\operatorname{Transport}=\left\{\left\{\frac{\sqrt{\beta 2}(\operatorname{Cos}[\phi]+\alpha 1 \operatorname{Sin}[\phi])}{\sqrt{\beta 1}}, \sqrt{\beta 1} \sqrt{\beta 2} \operatorname{Sin}[\phi]\right\},\left\{-\frac{(-\alpha 1+\alpha 2) \operatorname{Cos}[\phi]+\operatorname{Sin}[\phi]+\alpha 1 \alpha 2 \operatorname{Sin}[\phi]}{\sqrt{\beta 1} \sqrt{\beta 2}}, \frac{\sqrt{\beta 1}(\operatorname{Cos}[\phi]-\alpha 2 \operatorname{Sin}[\phi])}{\sqrt{\beta 2}}\right\}\right\} ;$
Fullsimplify [Transport.x0]
$\left\{\left\{\frac{1}{2} \sqrt{\beta 1} \sqrt{\beta 2} \ominus 1(\operatorname{Cos}[\phi] \operatorname{Cot}[\pi \mathrm{Q}]+\operatorname{Sin}[\phi])\right\},\left\{-\frac{\sqrt{\beta 1} \theta 1(\operatorname{Cos}[\phi](-1+\alpha 2 \operatorname{Cot}[\pi \mathrm{Q}])+(\alpha 2+\operatorname{Cot}[\pi \mathrm{Q}]) \operatorname{Sin}[\phi])}{2 \sqrt{\beta 2}}\right\}\right\}$

TrigReduce $[\operatorname{Cos}[\phi] \operatorname{Cot}[\pi \mathrm{Q}]+\operatorname{Sin}[\phi]]$
$\operatorname{Cos}[\pi \mathrm{Q}-\phi] \operatorname{Csc}[\pi \mathrm{Q}]$
We found back the known equation

$$
\begin{equation*}
x_{C O}(s)=\frac{\sqrt{\beta(s) \beta\left(s_{0}\right)}}{2 \sin (\pi Q)} \theta_{s_{0}} \cos (\phi-\pi Q) \tag{8}
\end{equation*}
$$

where ϕ is the phase advance (>0) from s_{0} to s.

Computing dispersion and chromaticity I

Up to now we considered all the optics parameters for the on-momentum particle. To evaluate the off-momentum effect of the closed orbit and the tune we introduce the dispersion, $D_{x, y}\left(s, \frac{\Delta p}{p_{0}}\right)$, and chromaticity, $\xi_{x, y}\left(\frac{\Delta p}{p_{0}}\right)$, respectively, as

$$
\Delta C O_{x, y}(s)=D_{x, y}\left(s, \frac{\Delta p}{p_{0}}\right) \times \frac{\Delta p}{p_{0}}, \quad D_{x, y}(s+C)=D(s)
$$

and

$$
\Delta Q_{x, y}=\xi_{x, y}\left(\frac{\Delta p}{p_{0}}\right) \times \frac{\Delta p}{p_{0}} .
$$

Computing dispersion and chromaticity II

In order to compute numerically the $D_{x, y}$ and $\xi_{x, y}$ one can compute first the $C O_{x, y}$ and the $Q_{x, y}$ as function of of $\frac{\Delta p}{p_{0}}$.

To do that one has to compute $M_{\text {ОTM }}\left(s, \frac{\Delta p}{p_{0}}\right)$, that is evaluate the property of the element of the lattice as function of $\frac{\Delta p}{p_{0}}$.

- In a thin quadrupole the focal length linearly scales with the beam rigidity:

$$
\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f\left(\frac{\Delta p}{P_{0}}\right)} & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f_{0} \times\left(1+\frac{\Delta p}{P_{0}}\right)} & 1
\end{array}\right) .
$$

- A dipolar kick θ, scales with the inverse of the beam rigidity:

$$
\binom{0}{\theta\left(\frac{\Delta p}{p_{0}}\right)} \rightarrow\binom{0}{\frac{\theta_{0}}{1+\frac{\Delta p}{p_{0}}}} .
$$

Where do we stand?

We learnt how to compute

- the invariant of the motions $J_{C S}$ and J_{H},
- the betatronic phase, $\mu(s)$, along the lattice,
- the CO given a set of kicks,
- the dispersion and chromaticity.

We will consider in the following an ensemble of non-interacting particle and we will introduce the concept of beam emittance and beam matching.

The Beam distribution, a set of N particles

Figure 5: From single particle to particle ensembles.

The Beam distribution, a set of N particles I

To track N particles is possible by using the same approach of the single particle tracking were X becomes $X_{\text {Beam }}$, a $2 n \times N$ matrix:

$$
X_{\text {Beam }}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

We will restrict ourself to the 1D case ($n=1$).
We are looking for one or more statistical quantities that represents this ensemble and its evolution in the lattice.
A natural one is the average J_{H} over the ensemble:

$$
\frac{1}{N} \sum_{i=1}^{N} J_{H, i}=\left\langle J_{H}\right\rangle
$$

From the definition it follows that the quantity is preserved during the beam evolution along the lattice.

Beam emittance

One can see that $\left\langle J_{H}\right\rangle$ converges, under specific assumptions (matched beam), to the rms emittance of the beam, $\epsilon_{r m s}$

$$
\epsilon_{r m s}=\sqrt{\operatorname{det}(\underbrace{\frac{1}{N} X_{B} X_{B}^{T}}_{\sigma \text { matrix }})}
$$

One can see that the $\epsilon_{r m s}$ is preserved for the symplectic linear transformation M from s_{0} to s_{1} (see Cauchy-Binet theorem):
$\epsilon_{r m s}^{2}\left(s_{0}\right)=\operatorname{det}\left(\frac{1}{N} X_{B} X_{B}^{T}\right)$
$\epsilon_{r m s}^{2}\left(s_{1}\right)=\operatorname{det}(M \underbrace{\frac{1}{N} X_{B} X_{B}^{T}}_{\sigma\left(s_{0}\right)} M^{T})=\underbrace{\operatorname{det} M}_{=1} \operatorname{det}\left(\frac{1}{N} X_{B} X_{B}^{T}\right) \underbrace{\operatorname{det} M^{T}}_{=1}$
where X_{B} denotes $X_{B}\left(s_{0}\right)$. Note that $\sigma\left(s_{1}\right)=M \sigma\left(s_{0}\right) M^{T}$.

The σ matrix

By its definition we have (e.g., 1D trace-space) that

$$
\sigma=\left(\begin{array}{ll}
\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i} & \frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\prime} \\
\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i} & \frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\overbrace{\left\langle\bar{x}^{2}\right\rangle}^{x_{r n}} & \\
\left\langle x x^{\prime}\right\rangle \\
\left\langle x x^{\prime}\right\rangle & \underbrace{\left\langle\bar{x}^{\prime 2}\right\rangle}_{x_{\text {rms }}^{\prime}}
\end{array}\right)
$$

and therefore we can write

$$
\epsilon_{r m s}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}} .
$$

So we show how to numerically transport the second-order moments of the beam distribution.

Matched beam distribution I

A beam distribution is matched to the specific optics functions $\bar{\alpha}$ and $\bar{\beta}$ if the corresponding normalized distribution is statistically invariant by rotation in the normalized space. In other words it has an azimuthal symmetry.

It is worth noting that since \bar{P}^{-1} is a symplectic matrix and defining $\bar{X}_{B}=\bar{P}^{-1} X_{B}$ we have that $\bar{\epsilon}_{r m s}=\epsilon_{r m s}$ and for a matched beam we have

$$
\bar{\sigma}=\frac{1}{N} \bar{X}_{B} \bar{X}_{B}^{T}=\bar{P}^{-1} \sigma \bar{P}=\left(\begin{array}{cc}
\overbrace{\left\langle\bar{x}^{2}\right\rangle}^{\bar{x}_{\text {rns }}^{2}} & \\
\left\langle\tilde{x} \bar{x}^{\prime}\right\rangle & \underbrace{\left\langle\bar{x}^{\prime}\right\rangle}_{\bar{x}_{r m s}^{\prime}}\rangle \\
& \left.\bar{x}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\epsilon_{r m s} & 0 \\
0 & \epsilon_{r m s}
\end{array}\right) .
$$

Therefore $\bar{\sigma}$ is diagonal.

Matched beam distribution II

Figure 6: A matched beam distribution in normalized trace-space.

Matched beam distribution III

Figure 7: A mismatched beam distribution in normalized trace-space.

Matched beam distribution IV

For a beam distribution matched to the specific optics functions $\bar{\alpha}$ and $\bar{\beta}$ the we have

$$
\sigma=\bar{P} \bar{\sigma} \bar{P}^{-1}=\left(\begin{array}{cc}
\bar{\beta} \epsilon_{r m s} & -\bar{\alpha} \epsilon_{r m s} \tag{9}\\
-\bar{\alpha} \epsilon_{r m s} & \bar{\gamma} \epsilon_{r m s}
\end{array}\right)
$$

where we found back the rms beam size and divergence formulas, $\sqrt{\bar{\beta} \epsilon_{r m s}}$ and $\sqrt{\bar{\gamma} \epsilon_{r m s}}$, respectively.

The rms size of a matched beam in a periodic stable lattice and at given position s_{0} is a turn-by-turn invariant.

J_{H} and $\epsilon_{r m s}$

Before concluding this chapter we demonstrate that, for matched beam, we have $\left\langle J_{H}\right\rangle=\epsilon_{r m s}$. In fact

$$
\begin{equation*}
J_{H}=\frac{\bar{x}^{2}+\bar{x}^{\prime 2}}{2} \tag{10}
\end{equation*}
$$

and, since the beam is matched then $\left\langle\bar{x}^{2}\right\rangle=\left\langle\bar{x}^{\prime 2}\right\rangle=\epsilon_{r m s}$, it yields

$$
\begin{equation*}
\left\langle J_{H}\right\rangle=\left\langle\frac{\bar{x}^{2}+\bar{x}^{\prime 2}}{2}\right\rangle=\frac{\left\langle\bar{x}^{2}\right\rangle+\left\langle\bar{x}^{\prime 2}\right\rangle}{2}=\epsilon_{r m s} . \tag{11}
\end{equation*}
$$

About ensembles

- We extended the single particle computation method to transport ensembles of particles.
- We introduced the concepts of beam σ matrix, the $\epsilon_{r m s}$, its relation with the $\left\langle J_{H}\right\rangle$ and the concept of beam matching.

MAD- in 20 min...

DISCLAIMER

- This material is intended to be an short introduction to MAD-X: a large part of the code capabilities are not discussed in details or are not discussed at all!
- Please refer to MAD-X web site http://madx.web.cern.ch/ to learn more.

What is MAD-X?

Methodical Accelerator Design version X

- A general purpose (free) beam optics and lattice program.
- It is used since more than 30 years.
- MAD-X is written in C/C++/Fortran77/Fortran90 (source code is available under CERN copyright).

```
I sterbini--bash - 51\times18
Last login: Wed Nov 7 10:53:39 on ttys000
macbe16107:~ sterbini$ madx
    +++++++++++++++++++++++++++++++++++++++++++++++
    + MAD-X 5.02.13 (64 bit, Darwin) +
    + Support: mad@cern.ch, http://cern.ch/mad +
    + Release date: 2016.12.20 +
    + Execution date: 2018.11.09 16:35:34 +
    ++++++++++++++++++++++++++++++++++++++++++++++++++
X:> quit;
    Number of warnings: 0
    +++++++++++++++++++++++++++++++++++++++++++++++
    + MaD-X finished normally
    +++++++++++++++++++++++++++++++++++++++++++++
macbe16107:~ sterbini$ ¢
```


A general purpose beam optics code

For circular machines, beam lines and linacs. . .

- Describe/document parameters from machine description.
- Design a lattice for getting the desired properties (matching).
- Simulate beam dynamics, imperfections and operation.

A general purpose beam optics code

MAD-X is

- multiplatforms (Linux/OSX/WIN...),
- very flexible and easy to extend,
- made for complicated applications, powerful and rather complete,
- mainly designed for large projects (LHC, CLIC, FCC...).

In large projects (e.g., LHC):

- Must be able to handle machines with $\geq 10^{4}$ elements,
- many simultaneous MAD-X users (LHC: more than 400 around the world): need consistent database,
- if you have many machines: ideally use only one design program.

Describe an accelerator in MAD-X

Goals. . .

- Describe, optimize and simulate a machine with several thousand elements eventually with magnetic elements shared by different beams, like in colliders.

MAD-X language

How does MAD-X get this info? Via text (interpreter).

- It accepts and executes statements, expressions...,
- it can be used interactively (input from command line) or in batch (input from file),
- many features of a programming language (loops, if's,...).

All input statements are analysed by a parser and checked.

- E.g. assignments: properties of machine elements, set up of the lattice, definition of beam properties, errors...
- E.g. actions: compute lattice functions, optimize and correct the machine...

MAD-X input language

- Strong resemblance to "C" language (but NO need for declarations and NOT case sensitive apart in expressions in inverted commas),
- free format, all statements are terminated with ; (do not forget!),
- comment lines start with: // or! or is between /*... */,
- Arithmetic expressions, including basic functions (exp, log, sin, cosh...), built-in random number generators and predefined constants (speed of the light, $e, \pi, \mathrm{~m}_{p}, \mathrm{~m}_{e} \ldots$).

In particular it is possible to use deferred assignments

- regular assignment: $\mathbf{a}=\mathbf{b}$, if \mathbf{b} changes \mathbf{a} does not,
- deferred assignment: $\mathbf{a}:=\mathbf{b}$, if \mathbf{b} changes \mathbf{a} is updated too.

EXAMPLE: deferred assignments

```
+++++++++++++++++++++++++++++++++++++++++++++++++
    + MAD-X 5.02.13 (64 bit, Darwin) +
    + Support: mad@cern.ch, http://cern.ch/mad +
    + Release date: 2016.12.20 +
    + Execution date: 2018.11.10 10:16:13 +
    ++++++++++++++++++++++++++++++++++++++++++++++++++++
x:> a=1;
X:> b=a;
X:> c:=a;
X:> a=2;
++++++ info: a redefined
x:> value a;
a =
X:> value b;
b =
x:> value c;
c =
x:> quit;
```

We use the value command to print the variables content.

Definitions of the lattice elements

Generic pattern to define an element:

label: keyword, properties...;

- For a dipole magnet: MBL: SBEND, L=10.0;
- For a quadrupole magnet: MQ: QUADRUPOLE, L=3.3;
- For a sextupole magnet: MSF: SEXTUPOLE, L=1.0;
In the previous examples we considered only the L property, that is the length in meters of the element.

The name of the parameter that define the normalized magnetic strength of the element depends on the element type.

- For dipole (horizontal bending) magnet is k_{0} :

$$
k_{0}=\frac{1}{B \rho} B_{y}\left[\mathrm{in} \mathrm{~m}^{-1}\right]
$$

- For quadrupole magnet is k_{1} :

$$
k_{1}=\frac{1}{B \rho} \frac{\partial B_{y}}{\partial x}\left[\mathrm{in} \mathrm{~m}^{-2}\right]
$$

- For sextupole magnet is k_{2} :

$$
k_{2}=\frac{1}{B \rho} \frac{\partial^{2} B_{y}}{\partial x^{2}}\left[\text { in }^{-3}\right]
$$

Interlude

What does k_{1} mean? It is related to the quad focal length ${ }^{2}$.

$$
\begin{equation*}
\frac{1}{k_{1} L_{\text {quad }}}=f \tag{12}
\end{equation*}
$$

Assuming $k_{1}=10^{-1} \mathrm{~m}^{-2}$ and $L_{\text {quad }}=10^{-1} \mathrm{~m}$ the $f=10^{2} \mathrm{~m}$.

${ }^{2}$ thin lens approximation

EXAMPLE: definitions of elements

- Kicker magnet:
theta $=1 \mathrm{e}-6$;
KICK: HKICKER, L=0, HKICK=theta;
- Multipole magnet "thin" element: MMQ: MULTIPOLE, KNL $=\{k 0 \cdot l, k 1 \cdot l, k 2 \cdot l, k 3 \cdot l, \ldots\}$;
- LHC dipole magnet as thick element:
length $=14.3$;
$\mathrm{p}=7000$;
angleLHC $=8.33 *$ clight $*$ length $/ \mathrm{p}$;
MBL: SBEND, ANGLE = angleLHC;

The lattice sequence

A lattice sequence is an ordered collection of machine elements.
Each element has a position in the sequence that can be defined wrt the CENTRE, EXIT or ENTRY of the element and wrt the sequence start or the position of an other element:
label: SEQUENCE, REFER=CENTRE, L=length;
... here specify position of all elements...;
...;
ENDSEQUENCE;

EXAMPLE: www.cern.ch/Ihcoptics

LHC Optics Web Home

The website contains information optics models for the LHC. Twiss table, madx scripts, plots can be browsed by selecting a scenario, an optics configuration and the data under interest.

Optics Scenarios

- LHC Run I protons Optics for LHC Run I protons for physics in 2011-2012.
- LHC Run II prphysics Optics for LHC Run II protons for physics in 2015.
- LHC Run II PR physics Optics for LHC Run II protons for physics in 2016.
- LHC Run IIppphysics Optics for LHC Run II protons for physics in 2017.
- LHC Run II pp VDM Optics for LHC Run II protons for Van Der Mer scans in 2015.
- LHC Run II pp HighBeta Optics for LHC Run II protons for High Beta physics in 2015.
- LHC Run II PbPb physics Optics for LHC Run II PbPb for physics in 2015.
- HLLHCV1.0 Optics for HL-LHC V1.0.
- HLLHCV1.1 Optics for HL-LHC V1.1.
- HLLHCV1.2 Optics for HL-LHC V1.2.
- HLLHCV13 Optics for HL-LHC V1.3.

About

These LHC Optics Web pages may be accessed via the LHC Project Home (click on the link for "Lattice and Optics") or directly at http://cern.ch/proj-lhc-optics-web/. An easy-to-remember shortcut is: cern.ch/lhcoptics You should be able to type this directly into your Web browser's address bar. The data is organized in a hierarchy as follows:

- Optics Scenarios: the scenario that can be associated to a layout and a particular use of the machine a given time (e.g. pp Run 2015, HL-LHCV1.2).
- Configuration: the state of the machine for which an optics exist (e.g. injection, end-of-ramp, squeeze 0.50-0.50-3.00-10.00) with a given value of the avaialble knows. A corresponding madx file will be given for the user to change the knobs.
- Selection: Part of the machine under interest (e.g. whole ring, IR2, ARC34)
- Data: The type of data generated by the model (e.g. Twiss parameters, Orbits, Apertures) in tabular form (TFS table, CSV table) or in plots.

EXAMPLE: the LHC sequence

Beam definition \& sequence activation

Generic pattern to define the beam:
label: BEAM, PARTICLE $=x, E^{2} E R Y^{a}=y, \ldots$;
e.g., BEAM, PARTICLE=proton, ENERGY=7000; / /in GeV
${ }^{2}$ It is the TOTAL energy!

After a sequence has been read, it can be activated:
USE, SEQUENCE=sequence_label;
e.g., USE, SEQUENCE=Ihc1;

The USE command expands the specified sequence, inserts the drift spaces and makes it active.

Definition of operations

Once the sequence is activated we can perform operations on it.

- Calculation of Twiss parameters around the machine (very important) in order to know, for stable sequences, their main optical parameters.
TWISS, SEQUENCE=sequence_label; / / periodic solution TWISS, SEQUENCE=sequence_label, betx=1;//IC solution
- Production of graphical output of the main optical function (e.g., β-functions):

PLOT, HAXIS=s, VAXIS=betx,bety;

Example

TWISS, SEQUENCE=juaseq, FILE=twiss.out; PLOT, HAXIS=s, VAXIS=betx, bety, COLOUR=100;

EXAMPLE of a the TWISS file

* NAME	S	BETX	BETY
\$ \%s	$\% l e$	$\% 1 \mathrm{e}$	$\% 1 \mathrm{e}$
"QF"	1.5425	107.5443191	19.4745051
"QD"	33.5425	19.5134888	107.4973054
"QF"	65.5425	107.5443191	19.4745051
"QD"	97.5425	19.5134888	107.4973054
"QF"	129.5425	107.5443191	19.4745051
"QD"	161.5425	19.5134888	107.4973054
"QF"	193.5425	107.5443191	19.4745051
"QD"	225.5425	19.5134888	107.4973054
"QF"	257.5425	107.5443191	19.4745051
"QD"	289.5425	19.5134888	107.4973054
"QF"	321.5425	107.5443191	19.4745051
"QD"	353.5425	19.5134888	107.4973054
"QF"	385.5425	107.5443191	19.4745051
"QD"	417.5425	19.5134888	107.4973054
"QF"	449.5425	107.5443191	19.4745051
"QD"	481.5425	19.5134888	107.4973054
"QF"	513.5425	107.5443191	19.4745051
"QD"	545.5425	19.5134888	107.4973054
"QF"	577.5425	107.5443191	19.4745051
"QD"	609.5425	19.5134888	107.4973054

EXAMPLE of the graphical output (ps format)

|n|||

Matching global parameters

It is possible to modify the optical parameters of the machine using the MATCHING module of MAD-X.

- Adjust magnetic strengths to get desired properties (e.g., tune Q, chromaticity dQ),
- Define the properties to match and the parameters to vary.

Example:

MATCH, SEQUENCE=sequence_name;
GLOBAL, Q1=26.58; / / H-tune
GLOBAL, Q2=26.62;//V-tune
VARY, NAME $=\mathbf{k q f}, \mathrm{STEP}=0.00001$;
VARY, $\mathrm{NAME}=\mathbf{k q d}, \mathrm{STEP}=0.00001$;
LMDIF, CALLS $=50$, TOLERANCE $=1 \mathrm{e}-6$; / / method adopted ENDMATCH;

Other types of matching I

Local matching and performance matching:

- Local optical functions (insertions, local optics change),
- any user defined variable.

Other types of matching II

Local matching and performance matching:

- Local optical functions (insertions, local optics change),
- any user defined variable.

Example:

MATCH, SEQUENCE=sequence_name; CONSTRAINT, range $=\# \mathrm{e}, \mathrm{BETX}=50$; CONSTRAINT, range $=\# \mathrm{e}, \mathrm{ALFX}=-2$; VARY, NAME $=\mathbf{k q f}, \mathrm{STEP}=0.00001$; VARY, NAME $=\mathbf{k q d}, \mathrm{STEP}=0.00001$; JACOBIAN, CALLS $=50$, TOLERANCE $=1 \mathrm{e}-6$;
ENDMATCH;

"Hello World!" input file

```
* ? LectureExample - sterbini@lxplus101:/eos/user/s/sterbini/_First/2018/LHC MD Optics/injection - vi fodo.mad - 92\times38
/****Definition of elements****/
qfrype:QUADRUPOLE, L=1.5, K1:=kf;
qdrype:QURDRUPOLE, L=1.5, K1:=kd;
/****Definition of the sequence****/
fodo: SEQUFNCE, REFER=exit, L=10;
qf: qfrype, at=5;
qd: qdType, at=10;
ENDSEQUSNCE;
/****Definition of the strength****/
kf=+0.25;
kd:=-kf;
/****Definition of the beam****/
beam, particle=proton, energy=7001;
/****Activation of the sequence****/
use, sequence=fodo;
/****Operations ****/
twiss, file=beforeNatching.twiss;
plot, HaxIS=s, vaxIS=betx, bety, title='Before matching';
/****Matching****/
MAMCH, sequence=fodo;
    GLOBML, Q1=.25;
    GLOBAL, Q2=.25;
    VARY, NAME=kf, STEP=0.00001;
    VARI, NTMMS=kd, SHESP=0.00001;
    IMDIF, CALLS=50, TOTERANCE=1e-8;
ENDMATCH;
/****Operations****/
twiss, file=afterMatching.twiss;
plot, HaXIS=s, VAXIS=betx, bety, title='after matching', interpolate=true;
QUIT;
"fodo.mad" 37L, 842C
```


"Hello World!" output (1)

```
? LectureExample - sterbini@lxplus101:/eos/user/s/sterbini/First/2018/LHC MD Optics/injection - -bash - 92*38
/****Definition of elements****/
qfrype:QURDRUPOLE, L=1.5, K1:=kf;
qdIype:QUADRUPOKE, L=1.5, K1:=kd;
/****Definition of the sequence****/
fodo:SEQUENCE, REFER=exit, L=10;
qf: qfrype, at=5;
qd: quryype, at=10;
FNDSEQUSNCE;
/****Definition of the strength****/
kf=+0.25;
kd:=-kf;
/****Definition of the beam****/
beam, particle=proton, energy=7001;
/****Activation of the sequence****/
use, sequence=fodo;
```


"Hello World!" output (2)

? LectureExample - sterbini@lxplus101:/eos/user/s/sterbini/_First/2018/LHC MD Optics/injection - -bash - 92×38

```
/****Operations****/
twiss, file=beforeMatching.twiss;
enter Twiss module
iteration: 1 error:
0.000000E+00 deltap:
0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.0000002+00
++++++ table: summ
length
10betxmax16.65487108
            xcorms
0
```

cymax

```deltap0synch_4
                synch_2
                    synch_3
                    synch_4
                            synch_5
                    nflips
plot, HaxIS=s, VaxIS=betx, bety, title='Before matching';
Plot - default table plotted: twiss
GXPLOR-X11 1.50 initialized
plot number =

\section*{"Hello World!" output (3)}


\section*{"Hello World!" output (4)}
? LectureExample - sterbini@lxplus101:/eos/user/s/sterbini/_First/2018/LHC MD Optics/injection - -bash - \(92 \times 38\)
```

/****Operations****/
twiss, file=afterMatching.twiss;
enter Twiss module
iteration: 1 error: 0.000000E+00 deltap: 0.000000E+00
orbit: }0.000000\textrm{z}+00 0.000000\textrm{z}+00 0.000000\textrm{E}+00 0.000000\textrm{E}+00 0.000000\textrm{E}+00 0.000000\textrm{E}+0
++++++ table: summ

length	orbit5	alfa	gammatr
10	-0	0	0
q1	dq1	betxmax	dxamax
0.2500000136	-0.3176945739	14.60761389	0
dxyms	xcomax	xcorms	c2
0	0	0	0.250000015
dq2	betymax	dymax	dyrms
-0.3176945752	14.60761386	0	0
ycomax	ycorms	deltap	synch_1
0	0	0	0
synch_2	synch_3	synch_4	syach_5
0	0	0	0
nflips			
0			
HaxIS=s, VaxIS=betx, bety, title='after matching', interpolate=true;			
lot - default table plotted: twiss			
number $=$	2		

plot number = 2
QUIT;

```

\section*{G. Sterbini Introduction to Optics Design}

\section*{MAD-X and python}

There is a very convenient python interface to MAD-X via the cpymad package
- setup the environment instructions: github.com/cerncas/2022Sevrier
- a basic python example and cpymad example

\author{
MAD-X test
}
[1]: from cpymad.madx import Madx
from matplotlib import pyplot as plt
Launching MAD-X
[2]: \(\operatorname{myMad}=\operatorname{Madx}()\)
+++++++++++++++++++++++++++++++++++++++++++++
+ MAD-X 5.05.00 (64 bit, Linux)
+ Support: mad@cern.ch, http://cern.ch/mad +
+ Release date: 2019.05.10
+ Execution date: 2019.06.03 12:48:59
+ Execution date: 2019.06.03 12:48:59
Definition of parameters

\section*{[3]: myString=' \({ }^{\prime}\)}

! Definition of parameters
```

! ***

```

L_cell=100;
quadrupoleLenght \(=5\);
\(\mathrm{f}=200\);
myK:=1/f/quadrupoleLenght;// m^-2
myMad. input(myString);

\section*{Copyright statement and speaker's release for video publishing}

The author consents to the photographic, audio and video recording of this lecture at the CERN Accelerator School. The term "lecture" includes any material incorporated therein including but not limited to text, images and references.

The author hereby grants CERN a royalty-free license to use his image and name as well as the recordings mentioned above, in order to post them on the CAS website.

The material is used for the sole purpose of illustration for teaching or scientific research. The author hereby confirms that to his best knowledge the content of the lecture does not infringe the copyright, intellectual property or privacy rights of any third party. The author has cited and credited any third-party contribution in accordance with applicable professional standards and legislation in matters of attribution.```

