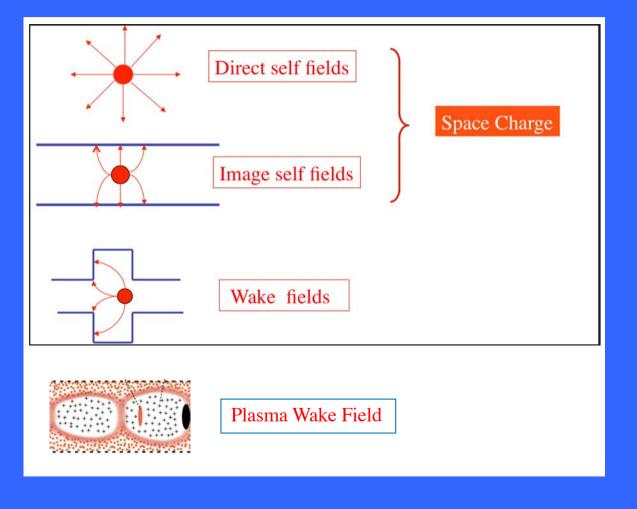
Space Charge in Linear Machines

Massimo.Ferrario@LNF.INFN.IT

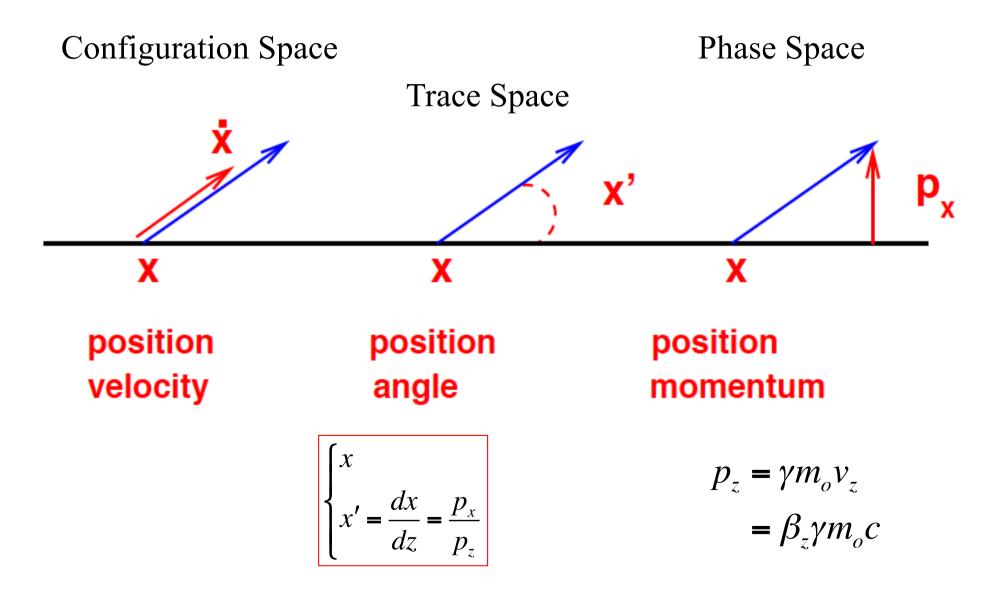


Annecy – November 9 - 2022

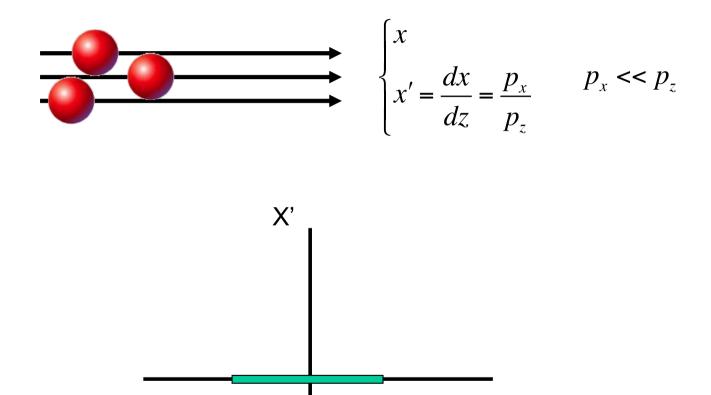
OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Typical coordinates to describe the particle motion (6 per particle)

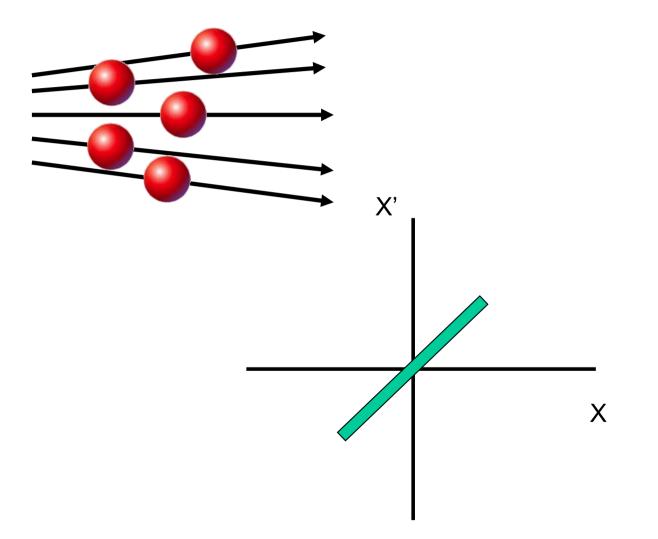


Trace space of an ideal laminar beam

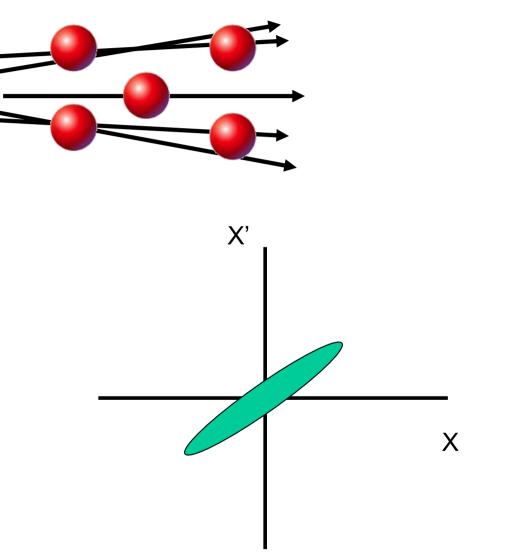


Х

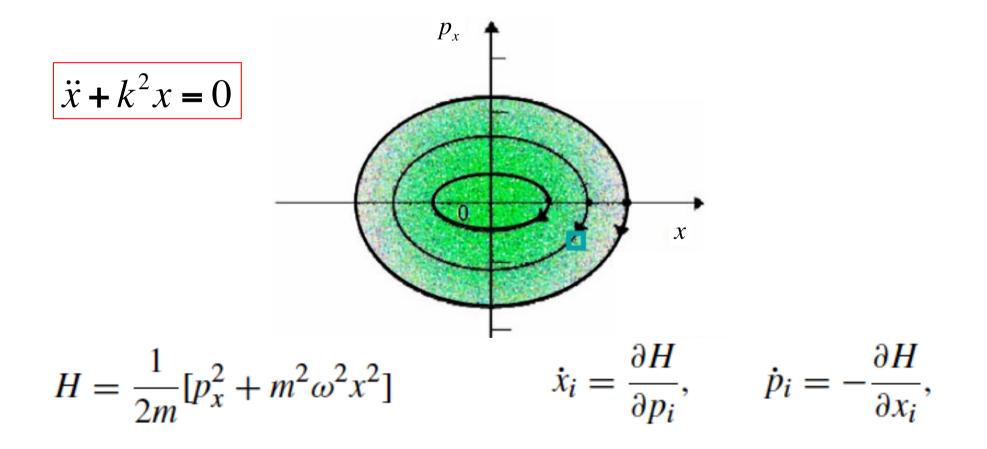
Trace space of a laminar beam



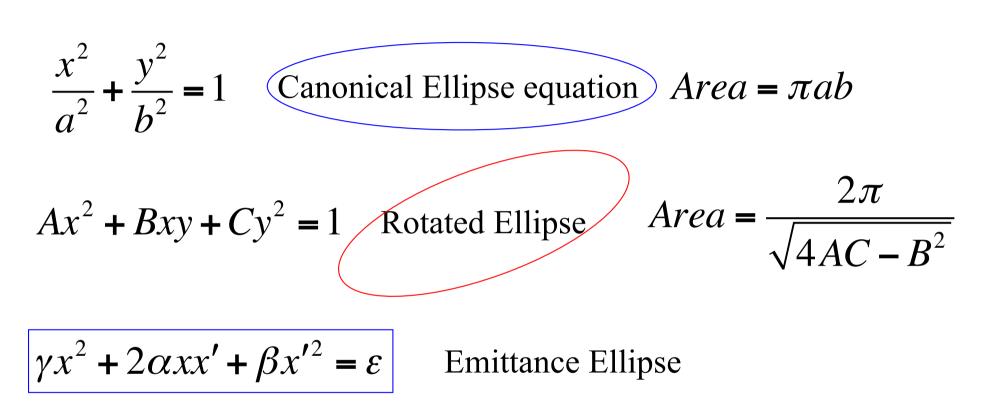
Trace space of non laminar beam



In a system where all the forces acting on the particles are linear (i.e., proportional to the particle's displacement x from the beam axis), it is useful to assume an elliptical shape for the area occupied by the beam in x-x' trace space or $x-p_x$ phase space.



Analytical Geometry: Ellipse



Area =
$$\frac{\pi\varepsilon}{\sqrt{\gamma\beta - \alpha^2}} = \pi\varepsilon \Leftrightarrow \gamma\beta - \alpha^2 = 1$$

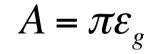
Geometric emittance:

Ellipse equation:

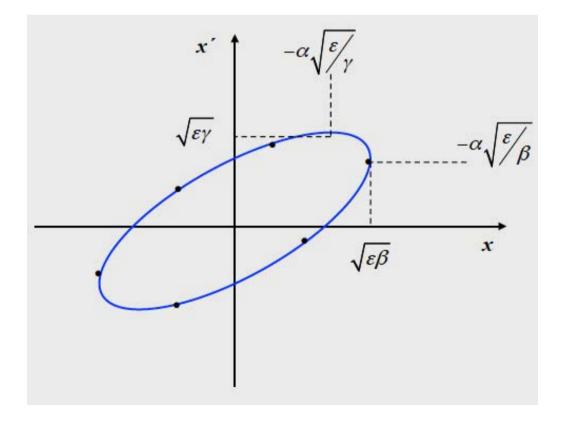
Ellipse equation:
$$\gamma x^2 + 2\alpha x x' + \beta {x'}^2 = \varepsilon_g$$

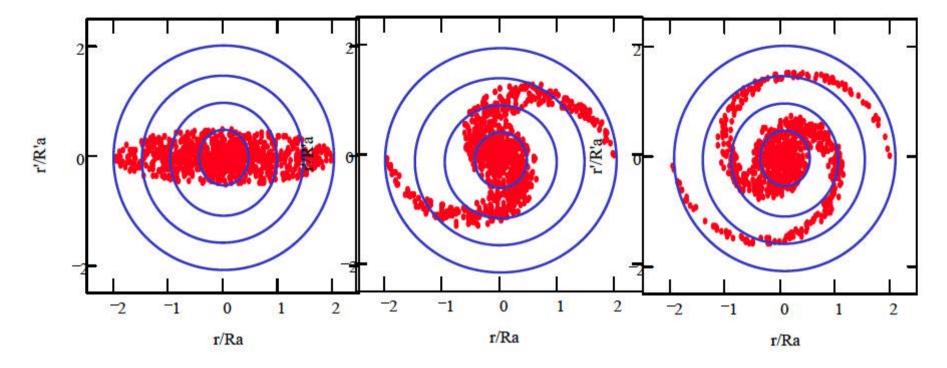
Twiss parameters: $\beta \gamma - \alpha^2 = 1$ $\beta' = -2\alpha$

Ellipse area:



 \mathcal{E}_{g}





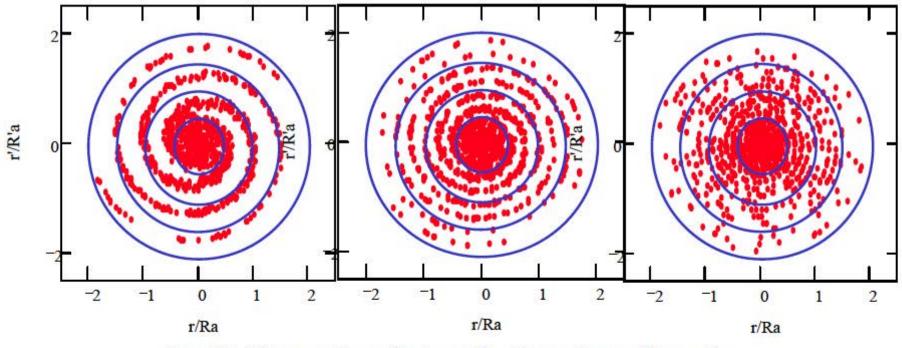
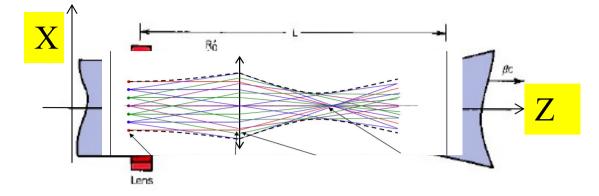


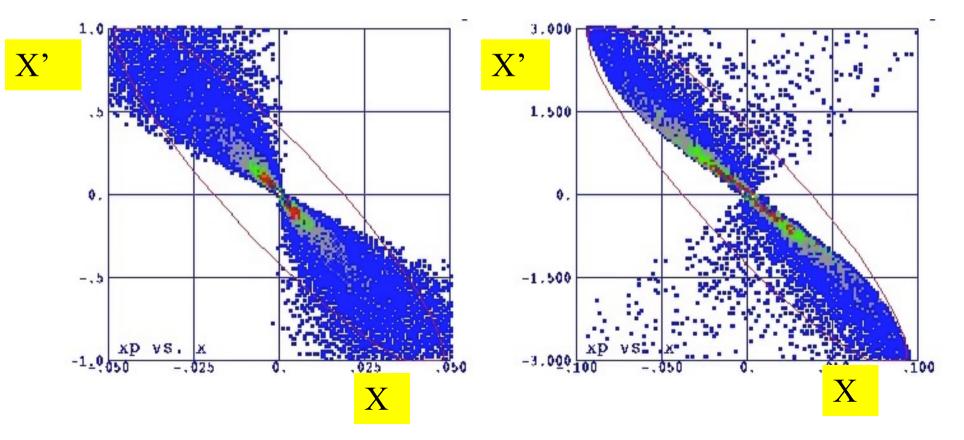
Fig. 17: Filamentation of mismatched beam in non-linear force

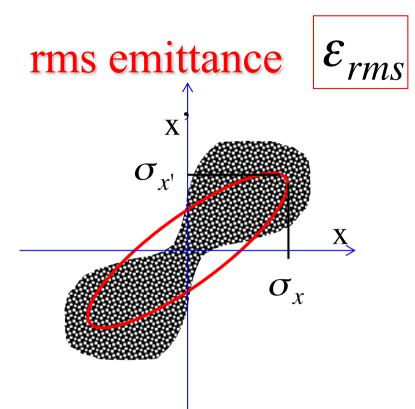
Phase space evolution

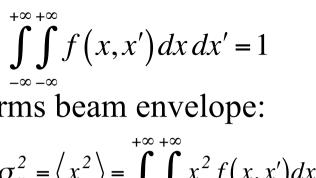


No space charge => cross over

With space charge => no cross over







$$f'(x,x') = 0$$

rms beam envelope:

$$\sigma_x^2 = \left\langle x^2 \right\rangle = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 f(x, x') dx dx'$$

Define rms emittance:

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon_{rms}$$

 $\sigma_x = \sqrt{\left\langle x^2 \right\rangle} = \sqrt{\beta \varepsilon_{rms}}$ such that: $\sigma_{x'} = \sqrt{\left\langle x'^2 \right\rangle} = \sqrt{\gamma \varepsilon_{rms}}$

 $\beta' = -2\alpha$ Since:

it follows:
$$\alpha = -\frac{1}{2\varepsilon_{rms}} \frac{d}{dz} \langle x^2 \rangle = -\frac{\langle xx' \rangle}{\varepsilon_{rms}} = -\frac{\sigma_{xx'}}{\varepsilon_{rms}}$$

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta \varepsilon_{rms}}$$
$$\sigma_{x}' = \sqrt{\langle x'^{2} \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$
$$\sigma_{xx'} = \langle xx' \rangle = -\alpha \varepsilon_{rms}$$

It holds also the relation:

 $\gamma\beta - \alpha^2 = 1$

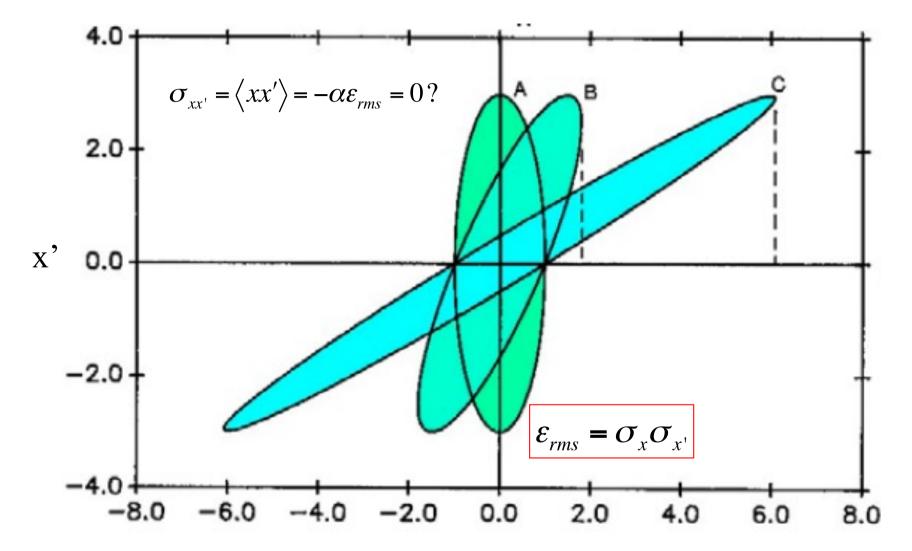
Substituting α, β, γ we get

$$\frac{\sigma_{x'}^2}{\varepsilon_{rms}} \frac{\sigma_x^2}{\varepsilon_{rms}} - \left(\frac{\sigma_{xx'}}{\varepsilon_{rms}}\right)^2 = 1$$

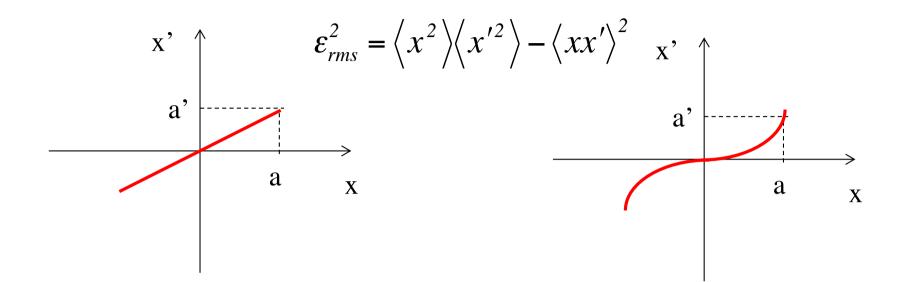
We end up with the definition of rms emittance in terms of the second moments of the distribution:

$$\varepsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2\right)} \qquad x' = \frac{p_x}{p_z}$$

Which distribution has no correlations?



What does rms emittance tell us about phase space distributions under linear or non-linear forces acting on the beam?



Assuming a generic x, x' correlation of the type: $x' = Cx^n$

$$\varepsilon_{rms}^{2} = C^{2} \left(\left\langle x^{2} \right\rangle \left\langle x^{2n} \right\rangle - \left\langle x^{n+1} \right\rangle^{2} \right)$$
When $n \neq 1 => \varepsilon_{rms} \neq 0$
When $n \neq 1 => \varepsilon_{rms} \neq 0$

Normalized rms emittance: $\varepsilon_{n,rms}$

Canonical transverse momentum: $p_x = p_z x' = m_o c \beta \gamma x'$ $p_z \approx p$

$$\varepsilon_{n,rms} = \frac{1}{m_o c} \sqrt{\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2} = \frac{1}{m_o c} \sqrt{\left(\left\langle x^2 \right\rangle \left\langle p_x^2 \right\rangle - \left\langle xp_x \right\rangle^2 \right)} \approx \left\langle \beta \gamma \right\rangle \varepsilon_{rms}$$

Liouville theorem: the density of particles n, or the volume V occupied by a given number of particles in phase space (x,p_x,y,p_y,z,p_z) remains invariant under conservative forces.

$$\frac{dn}{dt} = 0$$

It hold also in the projected phase spaces $(x,p_x),(y,p_y)(,z,p_z)$ provided that there are no couplings. But rms emittance is not Liouvillian!

Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two conjugate variables (x,p_x) . According to Heisenberg:

$$\sigma_x \sigma_{p_x} \ge \frac{\hbar}{2}$$

This limitation can be expressed by saying that the state of a particle is not exactly represented by a point, but by a small uncertainty volume of the order of \hbar^3 in the 6D phase space.

In particular for a single electron in 2D phase space it holds:

$$\varepsilon_{n,rms} = \frac{1}{m_o c} \sqrt{\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2} \implies \begin{cases} = 0 & \text{classical limit} \\ \ge \frac{1}{2} \frac{\hbar}{m_o c} = \frac{\hat{\lambda}_c}{2} = 1.9 \times 10^{-13} m & \text{quantum limit} \end{cases}$$

Where λ_c is the reduced Compton wavelength.

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Envelope Equation without Acceleration

Now take the derivatives:

$$\frac{d\sigma_x}{dz} = \frac{d}{dz}\sqrt{\langle x^2 \rangle} = \frac{1}{2\sigma_x}\frac{d}{dz}\langle x^2 \rangle = \frac{1}{2\sigma_x}2\langle xx' \rangle = \frac{\sigma_{xx'}}{\sigma_x}$$
$$\frac{d^2\sigma_x}{dz^2} = \frac{d}{dz}\frac{\sigma_{xx'}}{\sigma_x} = \frac{1}{\sigma_x}\frac{d\sigma_{xx'}}{dz} - \frac{\sigma_{xx'}^2}{\sigma_x^3} = \frac{1}{\sigma_x}(\langle x'^2 \rangle + \langle xx' \rangle) - \frac{\sigma_{xx'}^2}{\sigma_x^3} = \frac{\sigma_{xx'}^2}{\sigma_x^3} - \frac{\sigma_{xx'}^2}{\sigma_x^3}$$

And simplify:

$$\sigma_x'' = \frac{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2}{\sigma_x^3} + \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3} + \frac{\langle xx'' \rangle}{\sigma_x}$$

We obtain the rms envelope equation in which the rms emittance enters as defocusing pressure like term.

Beam Thermodynamics

Kinetic theory of gases defines temperatures in each directions and global as:

$$k_B T_x = m \left\langle v_x^2 \right\rangle \qquad T = \frac{1}{3} \left(T_x + T_y + T_z \right) \qquad E_k = \frac{1}{2} m \left\langle v^2 \right\rangle = \frac{3}{2} k_B T$$

Definition of beam temperature in analogy:

$$k_B T_{beam,x} = \gamma m_o \left\langle v_x^2 \right\rangle \qquad \left\langle v_x^2 \right\rangle = \beta^2 c^2 \left\langle x'^2 \right\rangle = \beta^2 c^2 \sigma_{x'}^2 = \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\sigma_x^2} = \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\rho_x^2}$$

We get:
$$k_B T_{beam,x} = \gamma m_o \left\langle v_x^2 \right\rangle = \gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\sigma_x^2} = \gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}}{\beta_x}$$

$$P_{beam,x} = nk_B T_{beam,x} = n\gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\sigma_x^2} = N_T \gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\sigma_L \sigma_x^2}$$

$$k_B T_{beam,x} = \gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}}{\beta_x}$$

Property	Hot beam	Cold beam
ion mass (m _o)	heavy ion	light ion
ion energy (βγ)	high energy	low energy
beam emittance (ɛ)	large emittance	small emittance
lattice properties ($\gamma_{x,y} \approx 1/\beta_{x,y}$)	strong focus (low β)	high β
phase space portrait	hot beam	cold beam ''

Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving cold (light) electron beam.

Particle Accelerators 1973, Vol. 5, pp. 61-65 © Gordon and Breach, Science Publishers Ltd. Printed in Glasgow, Scotland

EMITTANCE, ENTROPY AND INFORMATION

J. D. LAWSON Rutherford Laboratory, Chilton, Berkshire, England

P. M. LAPOSTOLLE Centre National d'Études des Télécommunications, Issy-les-Moulineaux, France

and

R. L. GLUCKSTERN Department of Physics and Astronomy, University of Massachusetts, Amherst, Mass. USA

$$S = kN\log(\pi\varepsilon)$$

Envelope Equation with Linear Focusing

$$\sigma_x'' - \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

Assuming that each particle is subject only to a linear focusing force, without acceleration: $x'' + k_x^2 x = 0$

take the average over the entire particle ensemble $\langle xx'' \rangle = -k_x^2 \langle x^2 \rangle$

$$\sigma_x'' + k_x^2 \sigma_x = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

We obtain the rms envelope equation with a linear focusing force in which, unlike in the single particle equation of motion, the rms emittance enters as defocusing pressure like term.

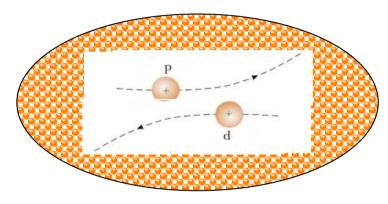
OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

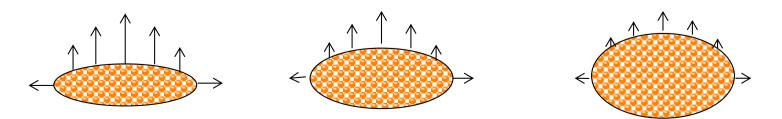
Space Charge: what does it mean?

The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:

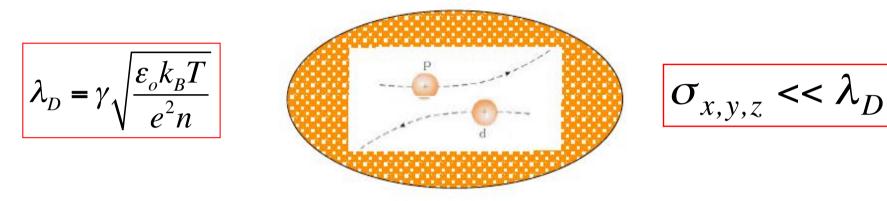
 Collisional Regime ==> dominated by binary collisions caused by close particle encounters ==> Single Particle Effects



2) **Space Charge Regime** ==> dominated by the **self field** produced by the particle distribution, which varies appreciably only over large distances compare to the average separation of the particles ==> **Collective Effects**

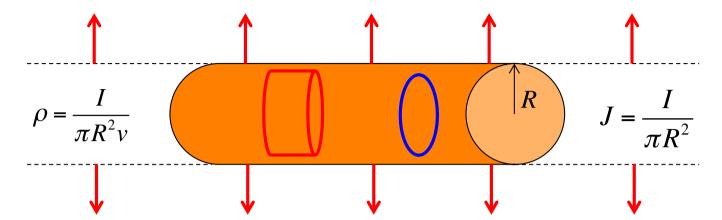


- The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:
- Collisional Regime ==> dominated by binary collisions caused by close particle encounters ==> Single Particle Effects



2) Space Charge Regime ==> dominated by the self field produced by the particle distribution, which varies appreciably only over large distances compare to the average separation of the particles ==> Collective Effects, Single Component Cold Plasma $\sigma_{x,y,z} >> \lambda_D$

Continuous Uniform Cylindrical Beam Model



Gauss' s law $\int \varepsilon_o E \cdot dS = \int \rho dV$

$$E_{r} = \frac{I}{2\pi\varepsilon_{o}R^{2}v}r \quad \text{for } r \le R$$
$$E_{r} = \frac{I}{2\pi\varepsilon_{o}v}\frac{1}{r} \quad \text{for } r > R$$

 $B_{\vartheta} = \frac{\beta}{2} E_r$

Ampere's law

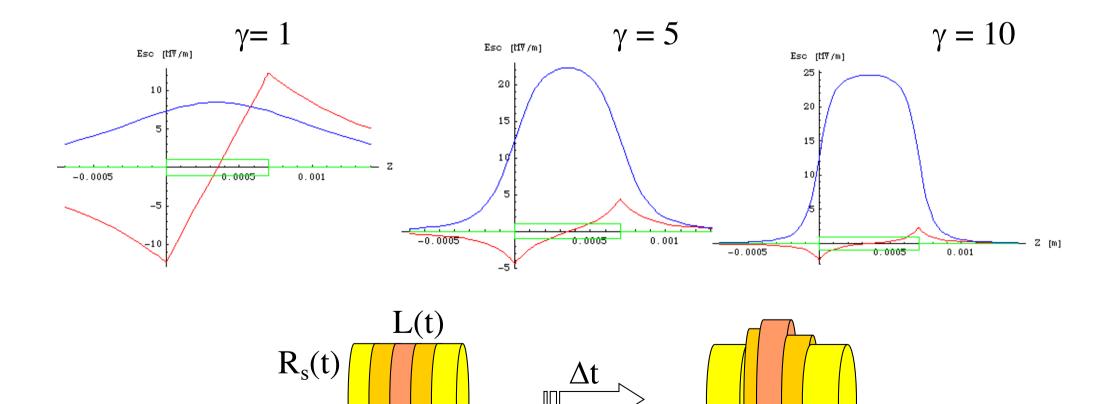
$$\int B \cdot dl = \mu_o \int J \cdot dS$$

$$B_{\vartheta} = \mu_o \frac{Ir}{2\pi R^2} \quad \text{for} \quad r \le R$$
$$B_{\vartheta} = \mu_o \frac{I}{2\pi r} \quad \text{for} \quad r > R$$

Bunched Uniform Cylindrical Beam Model

$$E_{z}(0,s,\gamma) = \frac{I}{2\pi\gamma\varepsilon_{0}R^{2}\beta c}h(s,\gamma)$$

$$E_r(r,s,\gamma) = \frac{Ir}{2\pi\varepsilon_0 R^2 \beta c} g(s,\gamma)$$



$$E_r(r,s,\gamma) = \frac{Ir}{2\pi\varepsilon_0 R^2 \beta c} g(s,\gamma)$$

Lorentz Force

$$F_r = e\left(E_r - \beta c B_{\vartheta}\right) = e\left(1 - \beta^2\right)E_r = \frac{eE_r}{\gamma^2}$$

$$B_{\vartheta} = \frac{\beta}{c} E_r$$

is a **linear** function of the transverse coordinate

$$\frac{dp_r}{dt} = F_r = \frac{eE_r}{\gamma^2} = \frac{eIr}{2\pi\gamma^2\varepsilon_0 R^2\beta c} g(s,\gamma)$$

The attractive magnetic force , which becomes significant at high velocities, tends to compensate for the repulsive electric force. Therefore space charge defocusing is primarily a non-relativistic effect. Using $R=2\sigma_x$ for a uniform distribution:

$$F_{x} = \frac{eIx}{8\pi\gamma^{2}\varepsilon_{0}\sigma_{x}^{2}\beta c}g(s,\gamma)$$

Envelope Equation with Space Charge

Single particle transverse motion:

$$\frac{dp_x}{dt} = F_x \qquad p_x = p \ x' = \beta \gamma m_o c x' \qquad p = const.$$

$$\frac{d}{dt}(px') = \beta c \frac{d}{dz}(p \ x') = F_x$$

$$x'' = \frac{F_x}{\beta c p} \qquad F_x = \frac{eIx}{8\pi\gamma^2 \varepsilon_0 \sigma_x^2 \beta c} g(s, \gamma)$$

$$x'' = \frac{k_{sc}(s, \gamma)}{\sigma_x^2} x \qquad k_{sc} = \frac{2I}{I_A} g(s, \gamma)$$

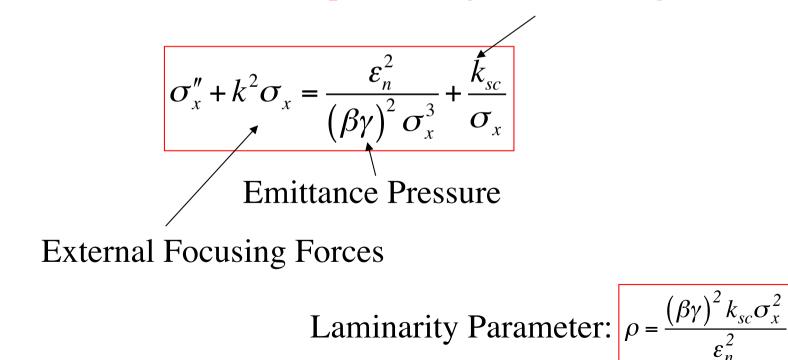
$$I_A = \frac{4\pi \varepsilon_o m_o c^3}{e}$$

Now we can calculate the term $\langle xx'' \rangle$ that enters in the envelope equation

$$\sigma_x'' = \frac{\varepsilon_{rms}^2}{\sigma_x^3} - \frac{\langle xx'' \rangle}{\sigma_x} \qquad \langle xx'' \rangle = \frac{k_{sc}}{\sigma_x^2} \langle x^2 \rangle = k_{sc}$$

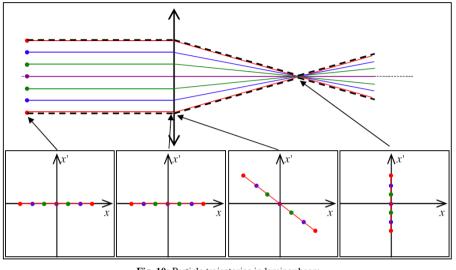
Including all the other terms the envelope equation reads:

Space Charge De-focusing Force



The beam undergoes two regimes along the accelerator

$$\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_x^2}{\left(\beta\gamma\right)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$



$$\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_n^2}{\left(\beta\gamma\right)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$

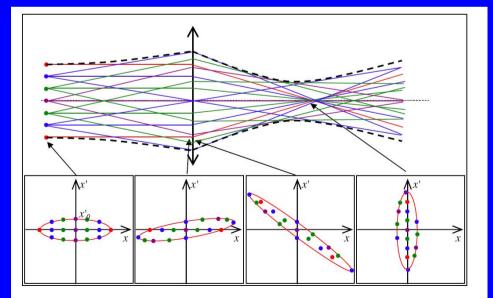


Fig. 11: Particle trajectories in non-zero emittance beam

OUTLINE

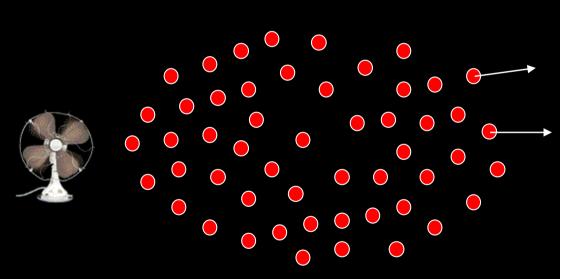
- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Neutral Plasma

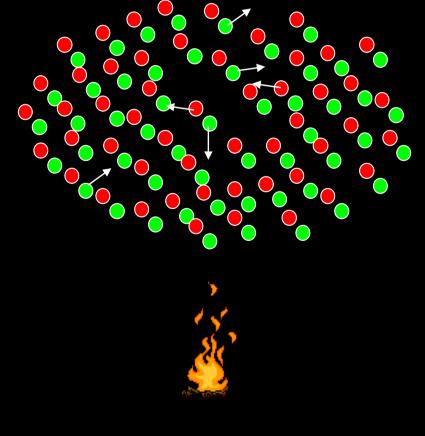
- Oscillations
- Instabilities
- EM Wave propagation

Single Component Cold Relativistic Plasma

Magnetic focusing

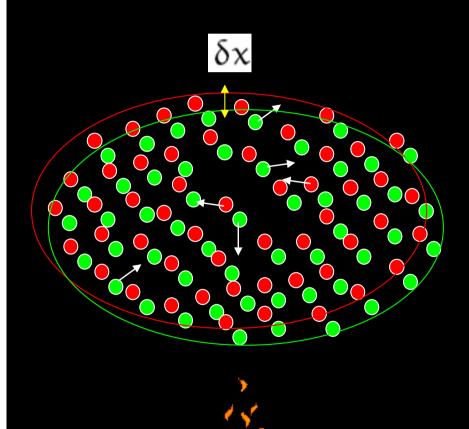


Magnetic focusing



Surface charge density

 $\sigma = e n \delta x$



Surface electric field

$$E_x = -\sigma/\epsilon_0 = -e \, n \, \delta x/\epsilon_0$$

Restoring force

$$m \frac{d^2 \delta x}{dt^2} = e \, E_x = -m \, \omega_p^{\ 2} \, \delta x$$

Plasma frequency

$$\omega_{\rm p}^{\ 2} = \frac{{\rm n} e^2}{\epsilon_0 {\rm m}}$$

Plasma oscillations

$$\delta x = (\delta x)_0 \cos\left(\omega_p t\right)$$

$$\sigma'' + k_s^2 \sigma = \frac{k_{sc}(s,\gamma)}{\sigma}$$

Equilibrium solution:

$$\sigma_{eq}(s,\gamma) = \frac{\sqrt{k_{sc}(s,\gamma)}}{k_s}$$

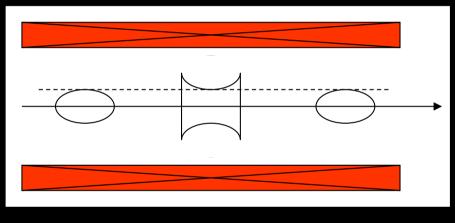
Small perturbation:

$$\sigma(\zeta) = \sigma_{eq}(s) + \delta\sigma(s)$$

$$\delta\sigma''(s) + 2k_s^2\delta\sigma(s) = 0$$

Single Component Relativistic Plasma

$$k_s = \frac{qB}{2mc\beta\gamma}$$

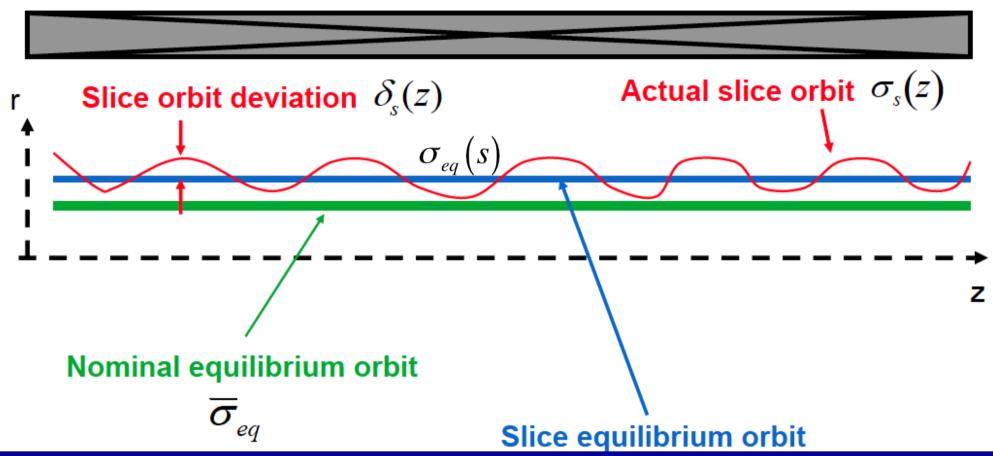


$$\delta\sigma(s) = \delta\sigma_o(s)\cos(\sqrt{2}k_s z)$$

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$\sigma(s) = \sigma_{eq}(s) + \delta\sigma_o(s)\cos(\sqrt{2}k_s z)$$

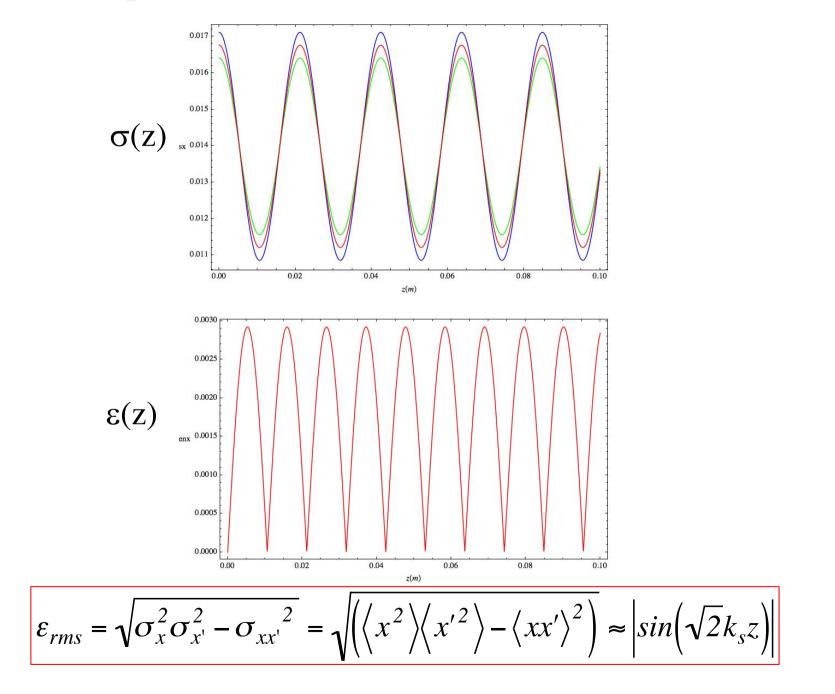
Continuous solenoid channel



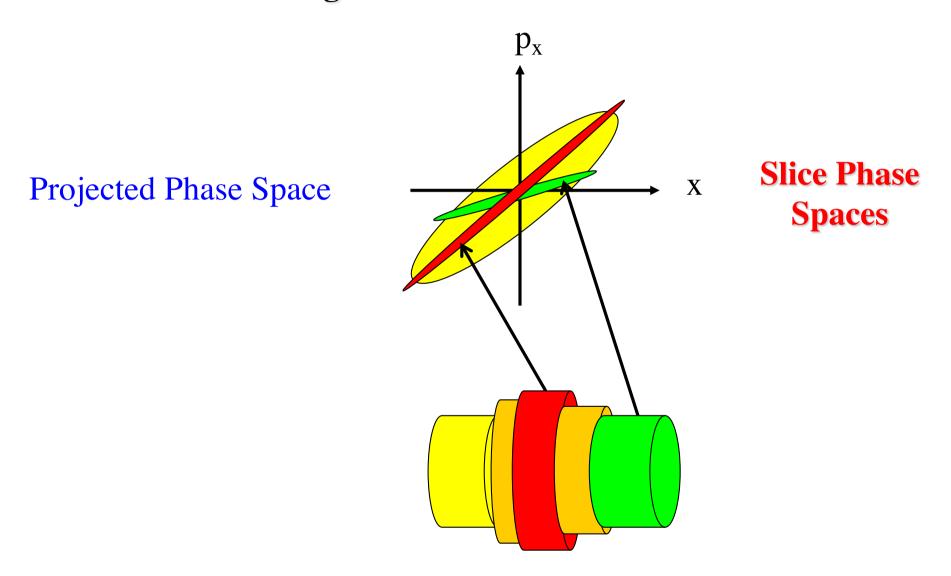
Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$\sigma(s) = \sigma_{eq}(s) + \delta\sigma_o(s)\cos(\sqrt{2}k_s z)$$

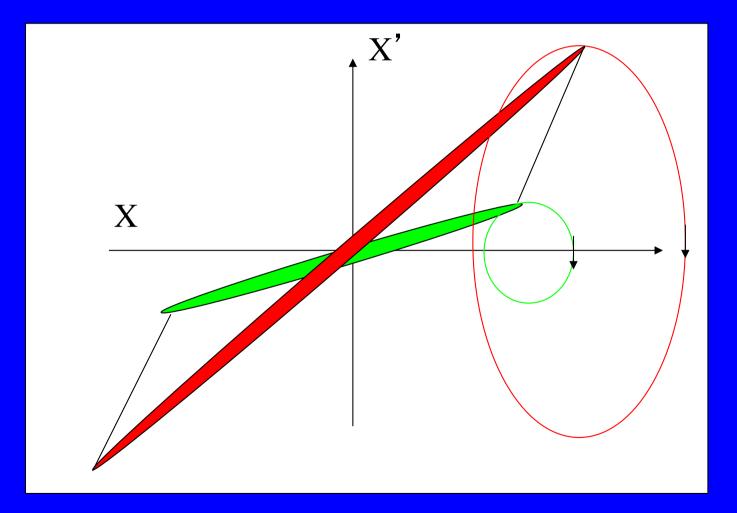
Envelope oscillations drive Emittance oscillations



Emittance Oscillations are driven by space charge differential defocusing in core and tails of the beam



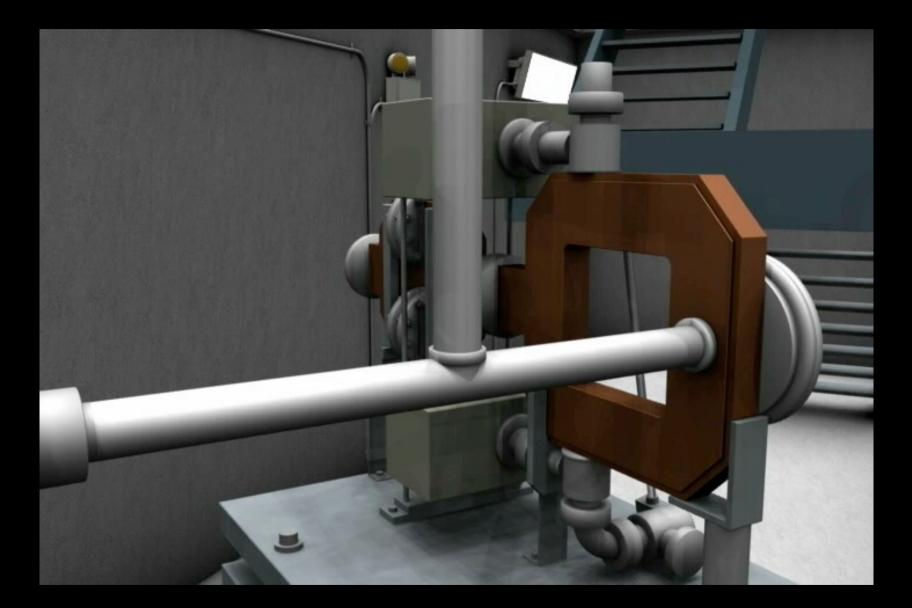
Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes



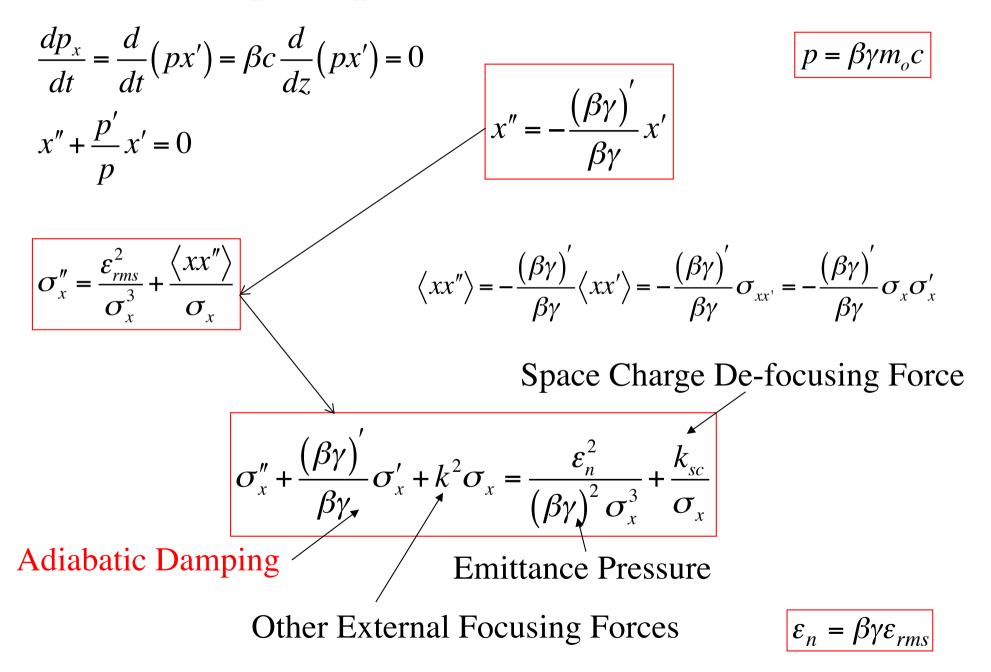
OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

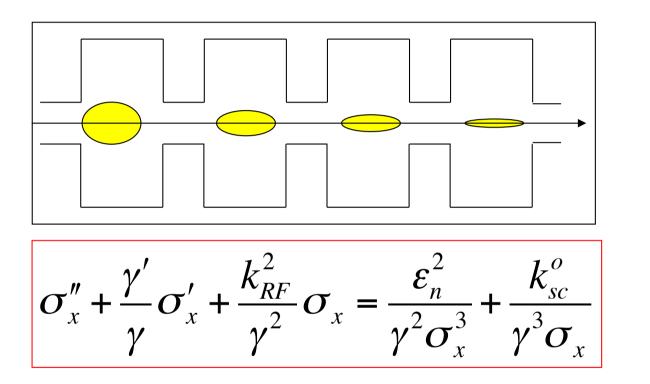
High Brightness Photo-Injector



Envelope_Equation with Acceleration



Beam subject to strong acceleration

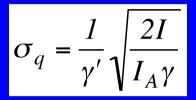


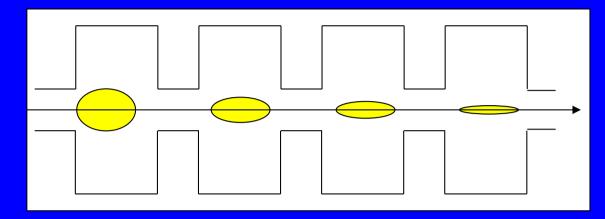
We must include also the RF focusing force:

$$k_{RF}^2 = \frac{{\gamma'}^2}{2}$$

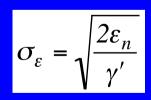
$$k_{sc}^{o} = \frac{2I}{I_A} g(s, \gamma)$$

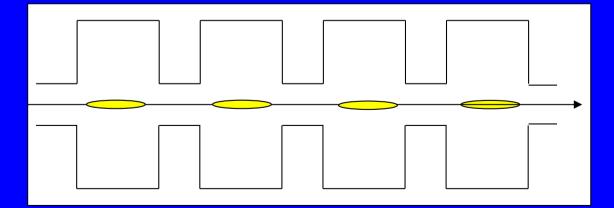
Space charge dominated beam (Laminar)



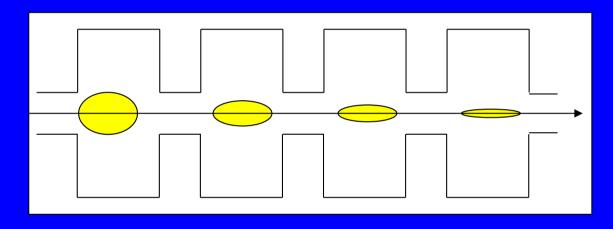


Emittance dominated beam (Thermal)





$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$



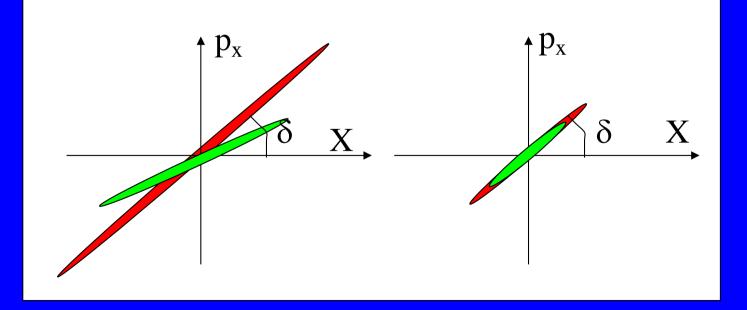
This solution represents a beam equilibrium mode that turns out to be the transport mode for achieving minimum emittance at the end of the emittance correction process

An important property of the laminar beam

$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$

$$\sigma_{q}' = -\sqrt{\frac{2I}{I_{A}\gamma^{3}}}$$

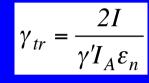
Constant phase space angle:
$$\delta = \frac{\gamma \sigma'_q}{\sigma_q} = -\frac{\gamma'}{2}$$

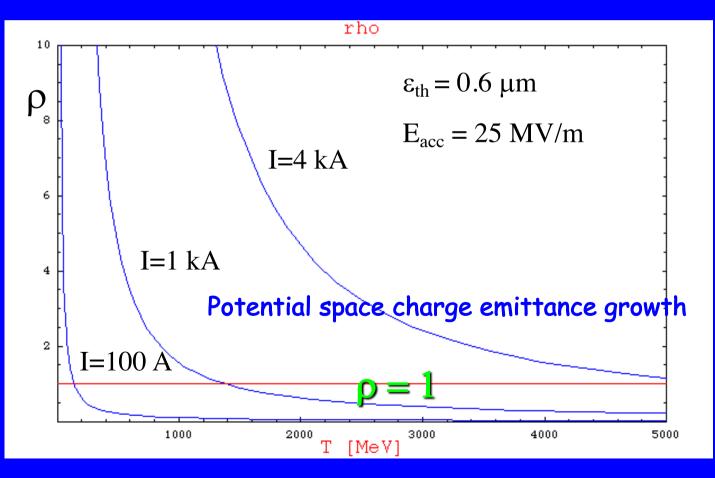


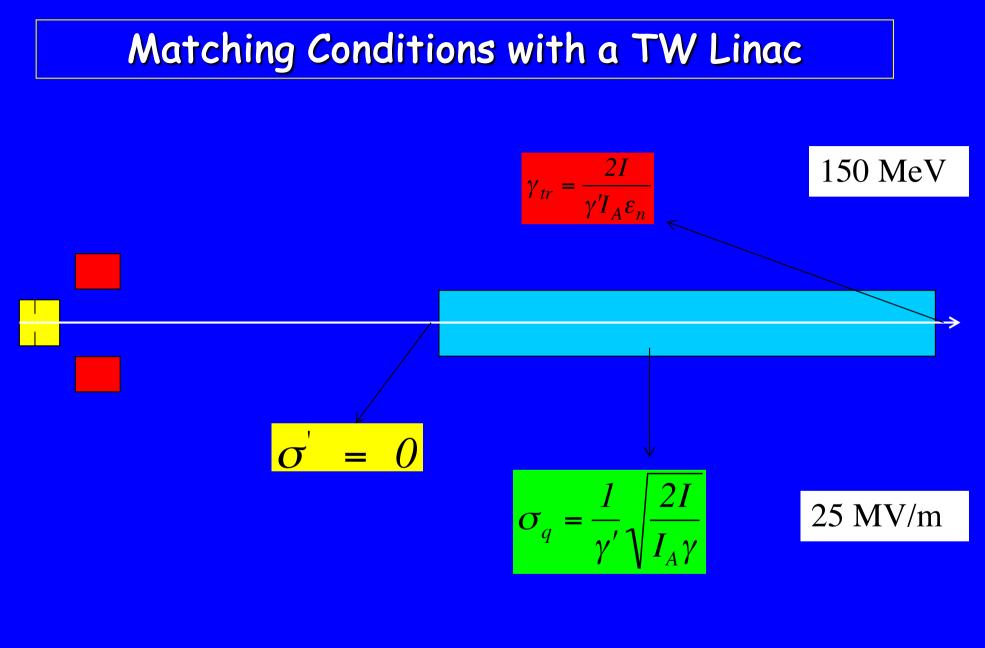
Laminarity parameter

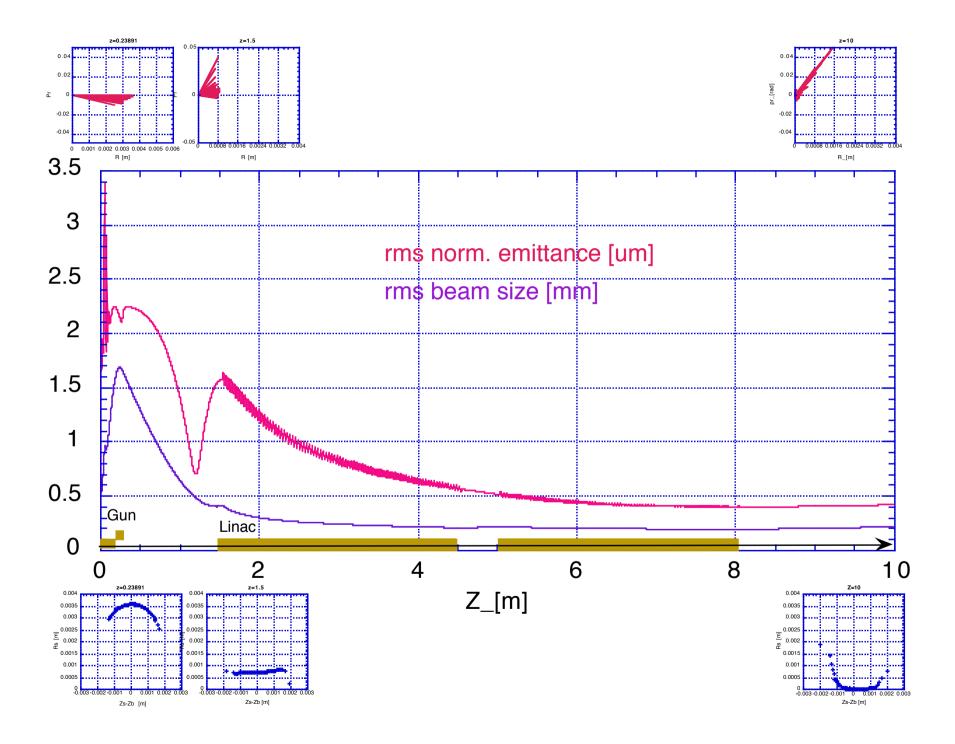
$$\rho = \frac{2I\sigma^2}{\gamma I_A \varepsilon_n^2} \equiv \frac{2I\sigma_q^2}{\gamma I_A \varepsilon_n^2} = \frac{4I^2}{\gamma'^2 I_A^2 \varepsilon_n^2 \gamma'^2}$$

Transition Energy (p=1)









<u>Emittance Compensation for a SC dominated beam:</u> <u>Controlled Damping of Plasma Oscillations</u>

ε_n oscillations are driven by Space Charge

- propagation close to the laminar solution allows control of ϵ_{n} oscillation "phase"

• ε_n sensitive to SC up to the transition energy

References:

[1] T. Shintake, Proc. of the 22nd Particle Accelerator Conference, June 25-29, 2007, Albuquerque, NM (IEEE, New York, 2007), p. 89.

[2] L. Serafini, J. B. Rosenzweig, PR E55 (1997) 7565

[3] M. Reiser, "Theory and Design of Charged Particle Beams", Wiley, New York, 1994

[4] J. B. Rosenzweig, "Fundamentals of beam physics", Oxford University Press, New York, 2003

[5] T. Wangler, "Principles of RF linear accelerators", Wiley, New York, 1998

[6] S. Humphries, "Charged particle beams", Wiley, New York, 2002

[7] F. J. Sacherer, F. J., IEEE Trans. Nucl. Sci. NS-18, 1105 (1971).

[8] M. Ferrario et al., Int. Journal of Modern Physics A, Vol 22, No. 23, 4214 (2007)

[9] J. Buon, "Beam phase space and emittance", in CERN 94-01

