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Typical coordinates to describe the particle motion
(6 per particle) 
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Trace space of an ideal laminar beam
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Trace space of a laminar beam



X

X’

Trace space of non laminar beam



In a system where all the forces acting on the particles are linear (i.e., 
proportional to the particle’s displacement x from the beam axis), it is 
useful to assume an elliptical shape for the area occupied by the beam 
in x-x‘ trace space or x-px phase space.

x

!!x + k2x = 0

x

px



γx2 + 2αx !x + β !x 2 = ε

Area = πε

γβ −α 2
= πε⇔ γβ −α 2 =1

Emittance Ellipse

Analytical Geometry: Ellipse
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Twiss parameters: 12 =−αβγ

Ellipse equation:

Geometric emittance:
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Ellipse area: A = πεg

!β = −2α





Phase space evolution

With space charge => no cross overNo space charge => cross over
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rms emittance
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rms beam envelope:
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Define rms emittance:

such that:

€ 

α = −
1

2εrms

d
dz

x2 = −
x % x 
εrms

= −
σ xx'

εrms

Since:

it follows:

!β = −2α

€ 

εrms
f x, !x( )dxd !x

−∞

+∞

∫
−∞

+∞

∫ =1 !f x, !x( ) = 0



€ 

γβ −α 2 = 1

σ x '
2

εrms

σ x
2

εrms
−
σ xx '

εrms

"

#
$

%

&
'

2

=1

It holds also the relation:

Substituting             we get
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εrms = σ x
2σ x '

2 −σ xx '
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We end up with the definition of rms emittance in terms  of the 
second moments of the distribution:
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Which distribution has no correlations?
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σ xx ' = x !x = −αεrms = 0?
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When n = 1 ==>   erms = 0

When n = 1    ==>   erms = 0
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What does rms emittance tell us about phase space distributions 
under linear or non-linear forces acting on the beam?

Assuming a generic            correlation of the type:
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Normalized rms emittance:

px = pz !x =mocβγ !xCanonical transverse momentum:

Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(x,px,y,py,z,pz) remains invariant under conservative forces.

It hold also in the projected phase spaces (x,px),(y,py)(,z,pz)
provided that there are no couplings.

But rms emittance is not Liouvillian! 
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Limit of single particle emittance
Limits are set by Quantum Mechanics on the knowledge of the two
conjugate variables (x,px). According to Heisenberg:

This limitation can be expressed by saying that the state of a particle
is not exactly represented by a point, but by a small uncertainty
volume of the order of in the 6D phase space.

In particular for a single electron in 2D phase space it holds:
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Where is the reduced Compton wavelength.! c
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Envelope Equation without Acceleration

Now take the derivatives:
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We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term.

εrms
2

σ x
3 ≈

T
V
≈ P



kBTx =m vx
2             T = 1

3
Tx +Ty +Tz( )           Ek =

1
2
m v2 =

3
2
kBT

Beam Thermodynamics

Kinetic theory of gases defines temperatures in each directions and 
global  as:  

Definition of beam temperature in analogy: 
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Assuming that each particle is subject only to a linear focusing 

force, without acceleration:

take the average over the entire particle ensemble 
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We obtain the rms envelope equation with a linear focusing force 
in which, unlike in the single particle equation of motion, the rms 
emittance enters as defocusing pressure like term.
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Envelope Equation with Linear Focusing
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Space Charge: what does it mean?
The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects
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Continuous Uniform Cylindrical Beam Model
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Ampere’s law
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Bunched Uniform Cylindrical Beam Model



Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect. Using R=2sx for a uniform distribution:

is a linear function of the transverse coordinate
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Envelope Equation with Space Charge
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External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation

€ 

x " " x 

€ 

" " σ x =
εrms

2

σ x
3 −

x " " x 
σ x

Including all the other terms the envelope equation reads:

€ 

ρ =
βγ( )2 kscσ x

2

εn
2Laminarity Parameter:



€ 

" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

€ 

" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

r>>1

r<<1

Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator



• The rms emittance concept
• rms envelope equation
• Space charge forces
• Space charge induced emittance oscillations
• Matching conditions and emittance compensation

OUTLINE



Neutral Plasma

Magnetic focusing

Magnetic focusing

Single Component       
Cold Relativistic Plasma

•Oscillations

•Instabilities

•EMWave propagation



Surface charge density Surface electric field

Restoring force

Plasma frequency

Plasma oscillations



Single Component 
Relativistic Plasma
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Envelope oscillations drive Emittance oscillations

€ 

εrms = σ x
2σ x'

2 −σ xx'
2 = x2 % x 2 − x % x 2( ) ≈ sin 2ksz( )



Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam
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Perturbed trajectories oscillate around the 
equilibrium with the 

same frequency but with different amplitudes
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High Brightness Photo-Injector
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Other External Focusing Forces

Space Charge De-focusing Force

Adiabatic Damping Emittance Pressure
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Beam subject to strong acceleration
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Space charge dominated beam (Laminar)

Emittance dominated beam (Thermal)



This solution represents a beam equilibrium mode that turns
out to be the transport mode for achieving minimum
emittance at the end of the emittance correction process
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Constant phase space angle:

An important property of the laminar beam
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Laminarity parameter

Transition Energy (r=1)

I=100 A

I=1 kA

I=4 kA

r

Potential space charge emittance growth

r = 1

eth = 0.6 µm

Eacc = 25 MV/m
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Matching Conditions with a TW Linac 

25 MV/m

150 MeV
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Emittance Compensation for a SC dominated beam: 
Controlled Damping of Plasma Oscillations

• en oscillations are driven by Space Charge

• propagation close to the laminar solution allows control of en
oscillation “phase”

• en sensitive to SC up to the transition energy
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