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• Direct Space Charge Effects
• Intra-beam scattering IBS

OUTLINE

• Image Charge Effects
• Image self fields
• Space charge effects in Storage Rings

The lifetimes of the beams in circular machines are much
longer than in linear devices



Space Charge: what does it mean?
The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects



A measure for the relative importance of collisional versus collective effects is the:

Debye Length lD

Let consider a non-neutralized system of identical charged particles

We wish to calculate the effective potential of a fixed test charged particle
surrounded by other particles that are statistically distributed.
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λD =
εokBT
e2nN => total number of particles               

n => particle number  density (N/V)
kB=> Boltzman constant
T => Temperature
kB T => average kinetic energy of the particles

The effective potential of a test charge can be defined as the sum of 
the potential of the single particle d and a “perturbation” term Dn.
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the effective interaction range of the test particle is limited to the 
Debye length

The charges sourrounding the test particles have a screening effect
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Smooth functions for the charge and field distributions can be used 
as long as the Debye length remains small compared to the particle 

bunch size
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In a charged particle beam moving at a longitudinal relativistic 
velocity, assuming that the random transverse motion in the 
beam is non-relativistic, the Debye length has the following 

form:
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Collisional regime

1) Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

1) multiple small-angle scattering events Intra-Beam Scattering (IBS) 
2) large-angle single scattering events Touschek Effect



Liouville theorem does not hold anymore under Collisions 
=> non Conservative forces involved



Beam Thermodynamics

Definition of beam temperature in analogy with kinetic theory of 
gases : 
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In a Circular machine when a particle accelerates above transition
energy it becomes slower and behaves like a particle with negative
mass:

transverse longitudinal



Let us first consider the ideal machine with a smooth-focusing lattice
below transition and negligible dispersion.

Coulomb collisions drive the beam toward an isotropic thermal
equilibrium, in which case the three temperatures would be the same:

The total thermal energy per particle in a smooth linear beam
channel is conserved, for a beam with constant energy (γ0 = const)

We can put the conservation law into the form:
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Conservation Law



in a circular machine we must replace 1/go by: −η =
1
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This relationship is the invariant for intra-beam scattering derived in
1974 by Piwinski. For a circular machine the behavior of the system
depends on the sign of η i.e. whether it is below transition (γ0 < γt) or
above (γ0 > γt ).

èbelow transition η < 0 è thermal equilibrium can be reached.
èabove transition η > 0 è thermal equilibrium is not possible.

An increase in momentum spread must be balanced by a
corresponding increase in the transverse emittances to maintain the
“conservation law”



The growth rate for intra-beam scattering in high-energy circular
machines defined as:

can be written in the relativistic form



In a relativistic storage ring, Coulomb collisions lead to a momentum
transfer from the transverse into the longitudinal direction that is
amplified by the Lorentz factor γo

Touschek Effect

While the total momentum in the collision is preserved, the two
particles emerge from this collision with opposite longitudinal
momentum components that are larger by the factor γo than the
original transverse momentum component before the collision.



If the longitudinal momentum acquired in such a collision is greater
than the momentum acceptance of the rf bucket that keeps the beam
longitudinally bunched, the two particles involved in such a
collisions will be lost.

The net result is that the lifetime of the stored beam is reduced.







• Direct Space Charge Effects
• The rms emittance concept
• rms envelope equation
• Space charge forces
• Beam (Plasma) emittance oscillations

OUTLINE

• Image Charge Effects
• Image self fields
• Space charge effects in Storage Rings



IMAGE SELF FIELDS

Direct self fields

Image self fields

Wake  fields  

Space Charge



Static Fields: conducting screens

Let us consider a point charge q close to a conducting screen. 
The electrostatic field can be derived through the "image method". Since the
metallic screen is an equi-potential plane, it can be removed provided that a
"virtual" charge is introduced such that the potential is constant at the position of
the screen

q q - q



I

A constant current in the free space produces circular magnetic field 

If µr»1, the material, even in the case of a good conductor, does not 
affect the field lines.



Circular  Perfectly Conducting  Pipe (Beam at Center)

there is a cancellation of the electric and magnetic forces



In some cases, the beam pipe cross section is such that we can consider only the
surfaces closer to the beam, which behave like two parallel plates. In this case, we
use the image method to a charge distribution of radius a between two conducting
plates 2h apart. By applying the superposition principle we get the total image field
at a position y inside the beam.
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Where we have assumed:   h>>a>y. 

For d.c. or slowly varying currents, the boundary condition imposed by the
conducting plates does not affect the magnetic field. We do not need “image
currents “As a consequence there is no cancellation effect for the fields produced
by the "image" charges.
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From the divergence equation we derive also the other transverse component, 
notice the opposite sign:
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Including also the direct space charge force, we get:
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Therefore, for g>>1, and for d.c. or slowly varying currents the cancellation effect 
applies only for the direct space charge forces. There is no cancellation of the 
electric and magnetic forces due to the "image" charges.



It is necessary to compare the wall thickness and the skin depth (region of 
penetration of the e.m. fields) in the conductor. 

If the fields penetrate and pass through the material, we are practically in 
the static boundary conditions case. Conversely, if the skin depth is very 
small, fields do not penetrate, the electric filed lines are perpendicular to 
the wall, as in the static case, while the magnetic field line are tangent to 
the surface. 
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Time-varying fields  
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Usually, the frequency beam spectrum is quite rich of harmonics,
especially for bunched beams.

It is convenient to decompose the current into a d.c. component, I,
for which dw>>Dw, and an a.c. component, Î, for which dw<< Dw.

While the d.c. component of the magnetic field does not perceives
the presence of the material, its a.c. component is obliged to be
tangent at the wall. For a charge density l we have I=lv.

We can see that this current produces a magnetic field able to cancel
the effect of the electrostatic force.

Parallel Plates (Beam at Center) a.c. currents
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There is cancellation of the electric and magnetic forces !!
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-L. J. Laslett, LBL Document PUB-6161, 1987, vol III



• Direct Space Charge Effects
• The rms emittance concept
• rms envelope equation
• Space charge forces
• Beam (Plasma) emittance oscillations
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• Image Charge Effects
• Image self fields
• Space charge effects in Storage Rings



When the beam is located at the centre of symmetry of the pipe, the e.m. forces due
to space charge and images cannot affect the motion of the centre of mass
(coherent), but change the trajectory of individual charges in the beam
(incoherent).

These force may have a complicate dependence on the charge position. A simple
analysis is done considering only the linear expansion of the self-fields forces
around the equilibrium trajectory.

Incoherent and Coherent Transverse Effects



Consider a perfectly circular accelerator with radius rx. The beam
circulates inside the beam pipe. The transverse single particle
motion in the linear regime, is derived from the equation of
motion. Including the self field forces in the motion equation, we
have
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Self Fields and betatron  motion



In the analysis of the motion of the particles in presence of the self
field, we will adopt a simplified model where particles execute
simple harmonic oscillations around the reference orbit.
This is the case where the focussing term is constant. Although this
condition in never fulfilled in a real accelerator, it provides a reliable
model for the description of the beam instabilities

€ 

" " x (s)+ Kxx(s) =
1

β 2Eo

Fx
self (x)

€ 

" " x (s)+
Q x

ρx

$ 

% 
& 

' 

( 
) 

2

x(s) =
1

β 2Eo

Fx
self (x,s)

Qx , Betatron tune is the  n. of 
betatron oscillations per turn:

Self Fields and betatron  motion



Transverse Incoherent  Effects

We take the linear term of the transverse force in the betatron equation:
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The shift of betatron wave numbers (tune shift) is negative since the space charge
forces are defocusing on both planes. Notice that the tune shift is, in general,
function of “z”, therefore we have also a tune spread inside the beam. Furthermore,
by including higher order terms in the transverse force, we don’t have the harmonic
oscillator equation any more.
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Example: Incoherent betatron tune shift for an uniform
electron beam of radius a, length lo, inside circular perfectly
conducting pipe
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For a real  bunched beams the space charge forces, and the tune shift 
depend on the longitudinal and radial position of the charge. 



Consequences of the space charge  tune shifts

In circular accelerators the values of the betatron tunes should
not be close to rational numbers in order to avoid the crossing of
linear and non-linear resonances where the beam becomes unstable.

The tune spread induced by the space charge force can make hard to
satisfy this basic requirement. Typically, in order to avoid major
resonances the stability requires

ΔQu < 0.3



Transverse Coherent  Effects

If the beam experiences a transverse deflection kick, it starts to
perform betatron oscillations as a whole. The beam, source of the
space charge fields moves transversely inside the pipe, while
individual particles still continue their incoherent motion around
the common coherent trajectory.
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The image charge is at a distance “d” such that
the pipe surface is at constant voltage, and pulls
the beam away from the center of the pipe.

Circular  Perfectly Conducting  Pipe (Beam off Center)



The effect is defocusing, the horizontal electric image field E and 
the horizontal force F are: 
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This coherent betatron tune shift, differently from the incoherent one 
does not depend on the beam size but on the pipe radius and it is 
inversely proportional to the beam energy.
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