Beam Emittance by QP Scan Method

Task: Measure the Emittance of the Laser Beam

Your tasks in green frames

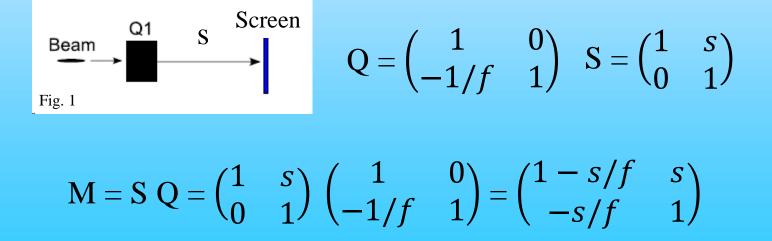
Introduction

Quadrupole scan method:

If β is known unambiguously as in a circular machine, then a single profile measurement determines ϵ by

 $\sigma_y^2 = \epsilon \beta_y$.

But it is not easy to be sure in a transfer line which β to use, or rather, whether the beam that has been measured is matched to the β -values used for the line. This problem can be resolved by using a single quadrupole scan system consists of a quadrupole magnet and a drift space s (Fig. 1). The transformation matrix M of this system for the Y direction can be obtained Using a thin-lens approximation for the quadrupole with K=±1/f, where f is the focusing strength of the quadrupole (- for focusing and + for defocusing)



Introduction

Introduction of σ -Matrix (see for example: K. Wille; Physik der Teilchenbeschleuniger, Teubner)

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \begin{pmatrix} \sigma_{y}^{2} & \sigma_{yy} \\ \sigma_{yy}^{2} & \sigma_{y}^{2} \end{pmatrix} = \mathcal{E}_{rms} \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} = \sigma \text{ matrix}$$

$$\varepsilon_{rms} = \sqrt{\det \sigma} = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^{2}} \qquad (\beta\gamma - \alpha^{2} = 1)$$

Beam width_{rms} of measured profile =
$$\sigma_y \not\in \sigma_{11} = \sqrt{\beta(s) \cdot \varepsilon}$$

Transformation of s-Matrix through the elements of an accelerator: The evolution of a beam matrix between two points s_1 and s_0 of an uncoupled transfer line is described by the following matrix equation:

$$\sigma_{s1} = M \cdot \sigma_{s0} \cdot M^{t}$$

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}; M^{t} = \begin{pmatrix} M_{11} & M_{21} \\ M_{12} & M_{22} \end{pmatrix}$$

The distances between screens or from Quadrupole to screen s and Quadrupole field strength 1/f are given, therefore the transport matrix M is known. Applying the transport matrix gives:

Introduction

$$\sigma_{s_{1}} = M \cdot \sigma_{s_{0}} \cdot M^{t}$$

$$= \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \cdot \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}_{s_{0}} \cdot \begin{pmatrix} M_{11} & M_{21} \\ M_{12} & M_{22} \end{pmatrix} = \sigma^{measured} = \begin{pmatrix} \sigma_{y}^{2} & \sigma_{yy'} \\ \sigma_{y'y} & \sigma_{y'}^{2} \end{pmatrix}_{s_{1}}^{measured} = \varepsilon_{rms} \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$

$$= \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \cdot \begin{pmatrix} \sigma_{11}M_{11} + \sigma_{12}M_{12} & \sigma_{11}M_{21} + \sigma_{12}M_{22} \\ \sigma_{21}M_{11} + \sigma_{22}M_{12} & \sigma_{12}M_{21} + \sigma_{22}M_{22} \end{pmatrix}$$

$$= \begin{pmatrix} M_{11}(\sigma_{11}M_{11} + \sigma_{12}M_{12}) + M_{12}(\sigma_{21}M_{11} + \sigma_{22}M_{12}) & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

$$\sigma_{11}^{new} = \sigma_{y}^{2} \stackrel{new}{=} M_{11}^{2} \sigma(s_{0})_{11}^{*} 2M_{11} M_{12} \sigma(s_{0})_{12}^{*} + M_{12}^{2} \sigma(s_{0})_{22}^{*} \quad (\sigma_{12} = \sigma_{21}) \quad (1)$$

Transferred/measured beam width² from s_n Unknown at QP (at s_0)

Solving $\sigma(s_n)_{11} \sigma(s_0)_{12}$ and $\sigma(s_0)_{22}$ while Matrix elements are known: <u>Needs minimum of three</u> different measurements, either three screens or three different Quadrupole settings with different field strength K = 1/f. We will use in the following some more focal length values and use a fit.

$$\sigma_{11}^{new} = \sigma_y^{2 new} = M_{11}^{2} \sigma(s_0)_{11} + 2M_{11} M_{12} \sigma(s_0)_{12} + M_{12}^{2} \sigma(s_0)_{22}$$

with
$$M = S Q = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix} = \begin{pmatrix} 1 - s/f & s \\ -s/f & 1 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$$

$$\sigma_{y}^{2} = (1-s/f)^{2} \sigma(s_{0})_{11} + 2s(1-s/f)\sigma(s_{0})_{12} + s^{2} \sigma(s_{0})_{22}$$

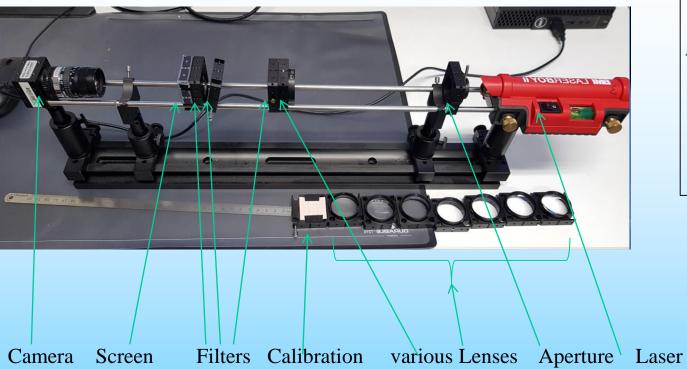
$$\sigma_{y}^{2} = (s/f)^{2} \sigma_{11}^{2} + (s/f)(2\sigma_{11}^{2} + 2s\sigma_{12}^{2}) + (\sigma_{11}^{2} + 2s\sigma_{12}^{2} + s^{2}\sigma_{22}^{2})$$

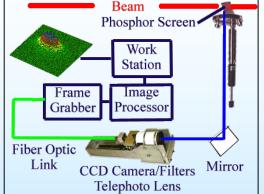
Parabola fit as a function of the quadrupole excitation (s/f) and the parameters (a,b,c) of $\sigma_y^2 = ax^2 + bx + c$ (width²!!!) contain the unknown beam properties σ_{11} , σ_{12} and σ_{22} .

$$a = \sigma_{11}$$
 $b = 2\sigma_{11} + 2s\sigma_{12}$ $c = \sigma_{11} + 2s\sigma_{12} + s^2\sigma_{22}$ or

 $\sigma_{11} = a \qquad \sigma_{12} = (b - 2\sigma_{11}) / 2s \qquad \sigma_{22} = (c - \sigma_{11} - 2s\sigma_{12}) / s^2$

$$\varepsilon_{rms} = \sqrt{\det \sigma} = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$$





By changing the lenses with different focal length f one can take pictures from the camera. The distance of the lens to the screen can be measured by a simple ruler. The camera is connected to a Computer where the readout software is installed. The pictures (.jpg) can be saved and can be loaded into a free software called "ImageJ" where a profile of an area can be displayed and the curser position and the value is displayed (8 bit). The σ of the profiles have to be found for each focal length and the emittance have to be calculated on an prepared Excel sheet..

Your tasks in green frames

Calibration

List

Save..

More »

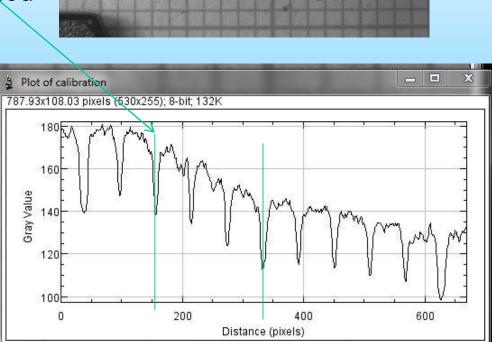
Live

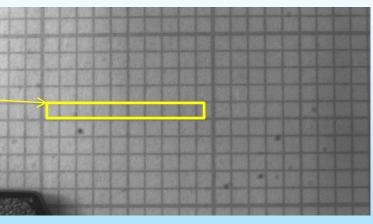
Use mm-grid to calibrate the readout setup.

Select ROI (where beam image will appear), plot profile, use cursor and enter measurement into pre-prepared Excel sheet "QP emittance.xlsx"

Calibratio	n				
Line-					
distance					
[mm]		pixel 1		pixel 2	
	3		66	401	
[meter]				Cal. Result	t
3.00E-	·03	=>		111.6667	pixel/mm

All yellow cells will be calculated automatically

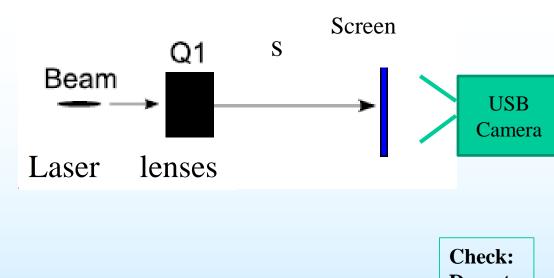




Check: Do not saturate

(255)

<u>Take some profiles at</u> <u>same distance</u> <u>lens-screen s with</u> <u>different focal length f.</u>

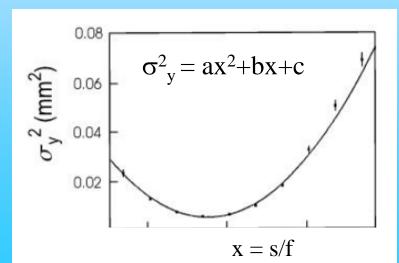


$$\varepsilon_{rms} = \sqrt{\det \sigma} = \sqrt{\sigma_{11}\sigma_{22} - \sigma_1^2}$$

 $M = S Q = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix} = \begin{pmatrix} 1 - s/f & s \\ -s/f & s \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$ $\sigma_{y}^{2} = (s/f)^{2} \sigma_{11} + (s/f)(2\sigma_{11} + 2s\sigma_{12}) + (\sigma_{11} + 2s\sigma_{12} + s^{2}\sigma_{22})$

 $\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \begin{pmatrix} \sigma_{y}^{2} & \sigma_{yy} \\ \sigma_{yy} & \sigma_{yy}^{2} \\ \sigma_{yy} & \sigma_{y}^{2} \end{pmatrix} = \varepsilon_{rms} \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} = \sigma \ matrix$

 $\sigma_{v \text{ measured}}^2 = M_1^2 \sigma_{11} + 2M_{11} M_{12} \sigma_{12} + M_{12}^2 \sigma_{22}$



Adjust the aperture so that the image looks quite gaussian at its larges size!

