Beam Emittance by QP Scan Method

Task: Measure the Emittance of the Laser Beam
Your tasks in green frames

Introduction

Quadrupole scan method:

If β is known unambiguously as in a circular machine, then a single profile measurement determines ε by

$$
\sigma_{y}^{2}=\varepsilon \beta_{y} .
$$

But it is not easy to be sure in a transfer line which β to use, or rather, whether the beam that has been measured is matched to the β-values used for the line. This problem can be resolved by using a single quadrupole scan system consists of a quadrupole magnet and a drift space s (Fig. 1). The transformation matrix M of this system for the Y direction can be obtained Using a thin-lens approximation for the quadrupole with $K= \pm 1 / f$, where f is the focusing strength of the quadrupole (- for focusing and + for defocusing)

$$
\mathrm{M}=\mathrm{S} \mathrm{Q}=\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)=\left(\begin{array}{cc}
1-s / f & s \\
-s / f & 1
\end{array}\right)
$$

Introduction

Introduction of σ-Matrix (see for example: K. Wille; Physik der Teilchenbeschleuniger, Teubner)

$$
\left.\left(\sigma_{0}\right) \sigma_{v}^{2} \sigma_{\ldots}\right) \xrightarrow{3} \text { beam size }^{2}
$$

$$
\varepsilon_{r m s}=\sqrt{\operatorname{det} \sigma}=\sqrt{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}
$$

$$
\left(\beta \gamma-\alpha^{2}=1\right)
$$

Beam width ${ }_{\text {rms }}$ of measured profile $=\sigma_{y} \not \approx \sigma_{11}=\sqrt{\beta(s) \cdot \varepsilon}$
Transformation of s-Matrix through the elements of an accelerator: The evolution of a beam matrix between two points s_{1} and s_{0} of an uncoupled transfer line is described by the following matrix equation:

$$
\sigma_{s 1}=M \cdot \sigma_{s 0} \cdot M^{t}
$$

$$
M=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) ; M^{t}=\left(\begin{array}{ll}
M_{11} & M_{21} \\
M_{12} & M_{22}
\end{array}\right)
$$

The distances between screens or from Quadrupole to screen s and Quadrupole field strength $1 / f$ are given, therefore the transport matrix M is known.
Applying the transport matrix gives:

Introduction

$$
\begin{align*}
& \sigma_{s_{1}}=M \cdot \sigma_{s_{0}} \cdot M^{t} \\
& =\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right)_{s_{0}} \cdot\left(\begin{array}{ll}
M_{11} & M_{21} \\
M_{12} & M_{22}
\end{array}\right)=\sigma^{\text {measurved }}=\left(\begin{array}{cc}
\sigma_{y}^{2} & \sigma_{y y^{\prime}} \\
\sigma_{y^{\prime} y} & \sigma_{y}^{2}
\end{array}\right)_{s_{1}} \text { measured }=\varepsilon_{\text {rmss }}\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right) \\
& =\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
\sigma_{11} M_{11}+\sigma_{12} M_{12} & \sigma_{11} M_{21}+\sigma_{12} M_{22} \\
\sigma_{21} M_{11}+\sigma_{22} M_{12} & \sigma_{12} M_{21}+\sigma_{22} M_{22}
\end{array}\right) \\
& =\left(\begin{array}{cc}
M_{11}\left(\sigma_{11} M_{11}+\sigma_{12} M_{12}\right)+M_{12}\left(\sigma_{21} M_{11}+\sigma_{22} M_{12}\right) & \ldots \\
\ldots & \ldots
\end{array}\right) \\
& \sigma_{11}^{\text {new }}=\sigma_{y}^{2} \text { new }=M_{11} \sigma\left(s_{0}\right)_{11}-2 M_{11} M_{1} \sigma \sigma\left(s_{0}\right)_{12}+M_{12} \sigma^{2} \sigma\left(s_{0}\right)_{22} \quad\left(\sigma_{12}=\sigma_{21}\right) \tag{1}
\end{align*}
$$

Transferred/measured beam width ${ }^{2}$ from $\mathrm{s}_{\mathrm{n}} \quad$ Unknown at QP (at s_{0})

Solving $\sigma\left(\mathrm{s}_{\mathrm{n}}\right)_{11} \sigma\left(\mathrm{~s}_{0}\right)_{12}$ and $\sigma\left(\mathrm{s}_{0}\right)_{22}$ while Matrix elements are known: Needs minimum of three different measurements, either three screens or three different Quadrupole settings with different field strength $K=1 / \mathbf{f}$. We will use in the following some more focal length values and use a fit.

$$
\sigma_{11}^{\text {new }}=\sigma_{\mathrm{y}}^{2}{ }^{\text {new }}=\mathrm{M}_{11}^{2} \sigma\left(\mathrm{~s}_{0}\right)_{11}+2 \mathrm{M}_{11} \mathrm{M}_{12} \sigma\left(\mathrm{~s}_{0}\right)_{12}+\mathrm{M}_{12}^{2} \sigma\left(\mathrm{~s}_{0}\right)_{22}
$$

with $\quad \mathrm{M}=\mathrm{S} \mathrm{Q}=\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ K & 1\end{array}\right)=\left(\begin{array}{cc}1-s / f & s \\ -s / f & 1\end{array}\right)=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)$

$$
\sigma_{\mathrm{y}}^{2}=(1-\mathrm{s} / \mathrm{f})^{2} \sigma\left(\mathrm{~s}_{0}\right)_{11}+2 \mathrm{~s}(1-\mathrm{s} / \mathrm{f}) \sigma\left(\mathrm{s}_{0}\right)_{12}+\mathrm{s}^{2} \sigma\left(\mathrm{~s}_{0}\right)_{22}
$$

$$
\sigma_{\mathrm{y}}^{2}=(\mathrm{s} / \mathrm{f})^{2} \sigma_{11}+(\mathrm{s} / \mathrm{f})\left(2 \sigma_{11}+2 \mathrm{~s} \sigma_{12}\right)+\left(\sigma_{11}+2 \mathrm{~s} \sigma_{12}+\mathrm{s}^{2} \sigma_{22}\right)
$$

Parabola fit as a function of the quadrupole excitation (s / f) and the parameters ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) of $\sigma_{y}^{2}=a x^{2}+b x+c$ (width ${ }^{2}!!!$) contain the unknown beam properties σ_{11}, σ_{12} and σ_{22}.

$$
\begin{array}{ccc}
\mathrm{a}=\sigma_{11} & \mathrm{~b}=2 \sigma_{11}+2 \mathrm{~s} \sigma_{12} & \mathrm{c}=\sigma_{11}+2 \mathrm{~s} \sigma_{12}+\mathrm{s}^{2} \sigma_{22} \text { or } \\
\sigma_{11}=\mathrm{a} & \sigma_{12}=\left(\mathrm{b}-2 \sigma_{11}\right) / 2 \mathrm{~s} & \sigma_{22}=\left(\mathrm{c}-\sigma_{11}-2 \mathrm{~s} \sigma_{12}\right) / \mathrm{s}^{2} \\
& \varepsilon_{r m s}=\sqrt{\operatorname{det} \sigma}=\sqrt{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}
\end{array}
$$

Setup

By changing the lenses with different focal length f one can take pictures from the camera. The distance of the lens to the screen can be measured by a simple ruler. The camera is connected to a Computer where the readout software is installed. The pictures (.jpg) can be saved and can be loaded into a free software called "ImageJ" where a profile of an area can be displayed and the curser position and the value is displayed (8 bit). The σ of the profiles have to be found for each focal length and the emittance have to be calculated on an prepared Excel sheet..

Your tasks in green frames
Check:
Do not
Calibration
Use mm-grid to calibrate the readout setup.
Select ROI (where beam image will appear), plot profile, use cursor and enter measurement into pre-prepared Excel sheet "QP emittance.xlsx"

Calibration			
Linedistance [mm]	pixel 1	pixel 2	
3	66	401	
[meter]		Cal. Result	
$3.00 \mathrm{E}-03$	=>	111.6667	pixel/mm

All yellow cells will be calculated automatically

Take some profiles at

 same distance lens-screen s with different focal length f .$\sigma=\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right)=\left(\begin{array}{cc}\sigma_{y}^{2} & \sigma_{y \prime} \\ \sigma_{y y^{\prime}} & \sigma_{y}^{2}\end{array}\right)=\varepsilon_{r m s}\left(\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right)=\sigma$ matrix

$$
\sigma_{y \text { measured }}^{2}=M_{1}^{2} \sigma_{11}+2 \mathrm{M}_{11} \mathrm{M}_{12} \sigma_{12}+\mathrm{M}_{12}^{2} \sigma_{22} \quad \varepsilon_{r m s}=\sqrt{\operatorname{det} \sigma}=\sqrt{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}
$$

Check: Do not saturate (255)
$\mathrm{M}=\mathrm{S} \mathrm{Q}=\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ K & 1\end{array}\right)=\left(\begin{array}{cc}1-s / f & s \\ -s / f & s\end{array}\right)=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)$
$\sigma_{\mathrm{y}}^{2}=(\mathrm{s} / \mathrm{f})^{2} \sigma_{11}+(\mathrm{s} / \mathrm{f})\left(2 \sigma_{11}+2 \mathrm{~s} \sigma_{12}\right)+\left(\sigma_{11}+2 \mathrm{~s} \sigma_{12}+\mathrm{s}^{2} \sigma_{22}\right)$

$x=s / f$

Adjust the aperture so that the image looks quite gaussian at its larges size!

Take some profiles at same distance lens-screen s with different focal length f.

Beam

Q1

Laser lenses

USB
Camera

Enter s , f and the measured σ from fits (in pixel) into the Excel sheet:
Check: Do not saturate (255)

Enter the fit parameters a, b, c from the fit displayed in the picture.
The emittance is calculated by the formulas:

$$
\sigma_{11}=\mathrm{a} \quad \sigma_{12}=\left(\mathrm{b}-2 \sigma_{11}\right) / 2 \mathrm{~s} \quad \sigma_{22}=\left(\mathrm{c}-\sigma_{11}+2 \mathrm{~s} \sigma_{12}\right) / \mathrm{s}^{2}
$$

$$
\varepsilon_{r m s}=\sqrt{\operatorname{det} \sigma}=\sqrt{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}
$$

