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Emittance

The emittance of an electron

beam is a measure of the area

occupied by the beam in phase

space.

In the absence of coupling and

dispersion, the horizontal

emittance is given by:

εx =
√
⟨x2⟩⟨p2x⟩ − ⟨xpx⟩2. (1)

With some approximations, the emittance of a beam remains

constant as the beam moves around a storage ring.

In a lattice with given focusing strength (i.e. fixed optics), a

smaller emittance leads to a smaller beam size.
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Brightness is a key figure of merit for SR sources

Brightness =
radiation power per unit bandwidth

phase space area of source
. (2)
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High photon brightness needs low electron beam emittance
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Low emittance is important for colliders

Luminosity is a key figure of merit for colliders. The luminosity

depends directly on the horizontal and vertical emittances.

Dynamical effects associated with the collisions mean that it is

sometimes helpful to increase the horizontal emittance; but

generally, reducing the vertical emittance as far as possible

helps to increase the luminosity.
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Lecture 1 objectives: linear dynamics with synchrotron radiation

In this lecture, we shall:

• describe the damping of synchrotron and betatron

oscillations by the emission of electromagnetic radiation;

• discuss how quantum excitation leads to equilibrium values

for the longitudinal and transverse beam emittances;

• give expressions for the damping times and equilibrium

emittances in terms of the synchrotron radiation integrals.
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Damping of synchrotron oscillations

Our first goal is to understand how synchrotron radiation leads

to the damping of synchrotron oscillations.

We shall proceed as follows:

• We write down the equations of motion for a particle

performing synchrotron motion, including the radiation

energy loss.

• We express the energy loss per turn as a function of the

energy of the particle: this leads to a “damping term” into

the equations of motion.

• Solving the equations of motion gives synchrotron

oscillations with amplitude that decays exponentially.
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Damping of synchrotron oscillations

We describe the longitudinal motion of a particle in a storage

ring in terms of the variables z and δ.

The co-ordinate z is the

longitudinal position of a

particle with respect to a

reference particle.

The reference particle is

moving round the ring on

the reference trajectory, with

the reference energy E0.

x

y

s
z

reference

particle

reference

trajectory

δ is the energy deviation of a particle with energy E:

δ =
E − E0

E0
. (3)
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Damping of synchrotron oscillations

A particle moving around

a storage ring gains

energy from the RF

cavities, and loses energy

by synchrotron radiation.

t=-z/c

V

eV=U0

Averaged over one turn, the change in energy deviation δ is:

∆δ =
eVrf
E0

sin
(
ϕs −

ωrfz

c

)
−

U

E0
, (4)

where Vrf is the RF voltage, ωrf the RF frequency, and U is the

energy lost by the particle through synchrotron radiation.

The “synchronous phase” ϕs is defined by the condition:

∆δ = 0 when z = 0 and δ = 0, i.e. sin(ϕs) =
U0

eVrf
. (5)
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Damping of synchrotron oscillations

The change in the longitudinal co-ordinate z as a particle

makes one turn around a storage ring (circumference C0) is

given by the momentum compaction factor αp:

∆z = −αpC0δ. (6)

The momentum compaction factor can

be written:

αp =
I1
C0

, (7)

where the first synchrotron radiation

integral I1 is:

I1 =
dC

dδ

∣∣∣∣
δ=0

=
∮

ηx

ρ
ds. (8)

Here, ηx is the dispersion, and ρ is the

radius of curvature at a given point along

the beam trajectory.

x

ρ

reference
trajectory,
length ds

particle trajectory,
length dC

dθ
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Damping of synchrotron oscillations

Let us assume that over a single revolution, the change in the

energy deviation ∆δ and the change in the longitudinal

co-ordinate ∆z are both small.

In that case, we can write the longitudinal equations of motion

for the particle:

dδ

dt
=

eVrf
E0T0

sin
(
ϕs −

ωrfz

c

)
−

U

E0T0
, (9)

dz

dt
= −αpcδ, (10)

where T0 = C0/c is the revolution period.

In solving these equations, we need to take into account the

fact that the energy loss per turn U depends on the energy

deviation δ...
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Damping of synchrotron oscillations

The energy loss per turn U depends on the energy of the

particle: particles with higher energy radiate more synchrotron

radiation power.

Assuming that |δ| ≪ 1, we work to first order in δ, so that:

U = U0 +∆E
dU

dE

∣∣∣∣
E=E0

= U0 + E0δ
dU

dE

∣∣∣∣
E=E0

. (11)

Also, we assume that the particle arrives at each RF cavity at a

phase close to the synchronous phase, so that:

sin
(
ϕs −

ωrfz

c

)
≈ sin(ϕs)− cos(ϕs)

ωrfz

c
. (12)
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Damping of synchrotron oscillations

With these assumptions, and combining the equations of

motion (9) and (10) we find the equation of motion for the

energy deviation:

d2δ

dt2
+2αE

dδ

dt
+ ω2

s δ = 0, (13)

where the synchrotron oscillation frequency ωs is given by*:

ω2
s = −

eVrf
E0

cos(ϕs)
ωrf

T0
αp, (14)

and the damping constant αE is:

αE =
1

2T0

dU

dE

∣∣∣∣
E=E0

. (15)

Equation (13) is the equation of motion for a damped harmonic

oscillator, with frequency ωs and damping constant αE.

*Note that for stable oscillations, we require cos(ϕs) < 0.
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Damping of synchrotron oscillations

If αE ≪ ωs, the energy deviation and longitudinal co-ordinate

vary as:

δ(t) = δ0 e
−αEt sin(ωst− θ0), (16)

z(t) =
αpc

ωs
δ0 e

−αEt cos(ωst− θ0), (17)

where δ0 and θ0 are constants (respectively, the amplitude and

phase of the oscillation at t = 0).

To evaluate the damping constant αE, we need to know how

the energy loss per turn U depends on the particle energy E...

Dynamics with Synchrotron Radiation 14



Damping of synchrotron oscillations

From classical electromagnetic theory, an ultrarelativistic

particle (β = v/c ≈ 1) with energy E in a magnetic field B emits

electromagnetic radiation with power:

Pγ ≈
Cγ

2π
e2c3E2B2, where Cγ =

e2

3ϵ0(mc2)4
. (18)

For electrons, Cγ ≈ 8.846× 10−5m/GeV3.

To find the energy loss per turn, we integrate Pγ over one

revolution period. For a particle on the reference trajectory,

with δ = 0, we find (see Appendix B):

U0 =
Cγ

2π
E4
0I2, (19)

where the second synchrotron radiation integral is:

I2 =
∮ 1

ρ2
ds. (20)
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Damping of synchrotron oscillations

To find the damping constant αE (15) we need (again from

Appendix B):

dU

dE

∣∣∣∣
E=E0

= jz
U0

E0
, (21)

where jz is the longitudinal damping partition number :

jz = 2+
I4
I2

. (22)

The fourth synchrotron radiation integral I4 accounts for

dispersion and any field gradient in the dipoles:

I4 =
∮

ηx

ρ

(
1

ρ2
+2k1

)
ds, where k1 =

ec

E0

∂By

∂x
. (23)

If the dipoles have no field gradient, then usually I4 ≪ I2, in

which case jz ≈ 2.
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Damping of synchrotron oscillations

The longitudinal damping time τz is defined by:

τz =
1

αE
=

2

jz

E0

U0
T0. (24)

The longitudinal emittance can be defined as:

εz =
√
⟨z2⟩⟨δ2⟩ − ⟨zδ⟩2. (25)

Since the amplitudes of the synchrotron oscillations decay with

time constant τz, the damping of the longitudinal emittance

can be written:

εz(t) = εz(0) exp
(
−2

t

τz

)
, (26)

where εz(0) is the longitudinal emittance at t = 0.
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Damping of betatron oscillations

Let us now consider the effect of synchrotron radiation on

betatron oscillations.

In the case of synchrotron oscillations, we assumed that the

changes in the longitudinal variables were small over a single

turn around the ring.

In other words, we assumed that the synchrotron frequency was

small compared to the revolution frequency.

This is not a valid assumption in the case of betatron

oscillations, so we shall have to take a different approach to the

analysis.

We shall first consider vertical betatron oscillations: this turns

out to be a simpler case than horizontal betatron oscillations.
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Damping of betatron oscillations

We describe the vertical

motion of a particle in a

storage ring in terms of the

variables y and py.

The co-ordinate y is the

vertical position of a particle

with respect to the

reference trajectory.

x

y

s

reference

particle

reference

trajectory

p

The conjugate momentum py is the vertical momentum of a

particle scaled by the reference momentum P0:

py =
γmvy

P0
, (27)

where γ is the relativistic factor, and vy is the vertical velocity

of the particle.
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Damping of vertical emittance

Radiation damping of betatron oscillations is a result of

particles losing momentum by emitting synchrotron radiation.

Synchrotron radiation is

emitted in a narrow cone

(opening angle 1/γ)

around the direction of

motion of the particle.

If a particle emits

radiation with

momentum ∆P , the

change in the vertical

conjugate momentum of

the particle is:

∆py = −py
∆P

P0
. (28)

s

y ΔP

y

py

Δpy

y

py

Δpy
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Damping of vertical emittance

The amplitude of the betatron oscillations of a given particle

can be characterised by the betatron action:

2Jy = γyy
2 +2αyypy + βyp

2
y . (29)

The vertical emittance of a beam is the average of the vertical

betatron action of all particles in the beam:

εy = ⟨Jy⟩. (30)

If all particles (at random betatron phases) lose an equal

amount of momentum ∆P , the change in vertical emittance is

found to be (an exercise for the student!�):

∆εy = ⟨∆Jy⟩ = −εy
∆P

P0
. (31)

�The results in Appendix A may be useful.
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Damping of vertical emittance

In the absence of radiation effects, the action Jy of each particle

remains constant as the particles move round a storage ring.

Then, assuming that the rate of change of emittance (from

emission of radiation) is slow compared to the revolution

frequency, the rate of change of the emittance can be found by

averaging the momentum loss around the ring:

dεy

dt
= −

εy

T0

∮
dP

P0
≈ −

U0

E0T0
εy = −

2

τy
εy. (32)

Here, T0 is the revolution period, E0 is the reference energy,

and U0 is the energy loss in one turn.

The approximation in the above formulae is valid for an

ultra-relativistic particle, which has E ≈ Pc.
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Damping of vertical emittance

The evolution of the vertical emittance is given by:

εy(t) = εy(0) exp

(
−2

t

τy

)
, (33)

where the vertical damping time τy is:

τy = 2
E0

U0
T0. (34)

Note the similarity with the formula for the evolution of the

longitudinal emittance (26):

εz(t) = εz(0) exp
(
−2

t

τz

)
. (35)

where the longitudinal damping time is:

τz =
2

jz

E0

U0
T0. (36)

Since (in many cases) jz ≈ 2, the vertical damping time is often

about twice the longitudinal damping time.
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Damping of vertical emittance

Typically, in an electron storage ring, the damping time is of

order several tens of milliseconds, while the revolution period is

of order of a microsecond.

Therefore, radiation effects are indeed “slow” compared to the

revolution frequency.

But note that we made the assumption that the momentum of

the particle was close to the reference momentum, i.e. P ≈ P0.

If the particle continues to radiate without any restoration of

energy, eventually this assumption will no longer be valid...
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Damping of vertical emittance

However, electron storage rings contain RF cavities to restore

the energy lost through synchrotron radiation. But then, we

should consider the change in momentum of a particle as it

moves through an RF cavity.

RF cavities are usually

designed to provide a

longitudinal electric field.

There is then no change in

the transverse momentum

when a particle passes

through the cavity.

ΔP

y

s

Therefore, we do not have to consider explicitly the effects of

RF cavities on the emittance of the beam.
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Damping of horizontal emittance

Analysis of radiation effects on the vertical emittance was

relatively straightforward. When we consider the horizontal

emittance, there are three complications that we need to

address:

• The horizontal motion of a particle is often strongly

coupled to the longitudinal motion (by dispersion): when a

particle emits radiation, its horizontal co-ordinate with

respect to the closed orbit will change.

• Where the reference trajectory is curved (usually, in

dipoles), the path length taken by a particle depends on the

horizontal co-ordinate with respect to the reference

trajectory.

• Dipole magnets are sometimes built with a gradient, so

that the vertical field seen by a particle in a dipole depends

on the horizontal co-ordinate of the particle.
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Damping of horizontal emittance

Taking all the above effects into account, we can proceed along
the same lines as for the analysis of the vertical emittance:

• Write down the changes in co-ordinate x and momentum px resulting
from an emission of radiation with momentum dp (taking into account
the additional effects of dispersion).

• Substitute expressions for the new co-ordinate and momentum into the
expression for the horizontal betatron action, to find the change in the
action resulting from the radiation emission.

• Average over all particles in the beam, to find the change in the
emittance resulting from radiation emission from each particle.

• Integrate around the ring (taking account of changes in path length
and field strength with x in the bends) to find the change in emittance
over one turn.

The algebra gets somewhat cumbersome, and is not especially

enlightening. See Appendix C for more details. Here, we just

quote the result...
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Damping of horizontal emittance

The horizontal emittance decays exponentially:

dεx

dt
= −

2

τx
εx, (37)

where the horizontal damping time is given by:

τx =
2

jx

E0

U0
T0. (38)

The horizontal damping partition number jx is:

jx = 1−
I4
I2

, (39)

where the fourth synchrotron radiation integral is given by (23):

I4 =
∮

ηx

ρ

(
1

ρ2
+2k1

)
ds, k1 =

e

P0

∂By

∂x
. (40)
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Summary: synchrotron radiation damping

The energy loss per turn is given by:

U0 =
Cγ

2π
E4
0I2, Cγ ≈ 8.846× 10−5m/GeV3. (41)

The emittances damp exponentially:

εx(t) = εx0 exp
(
−2

t

τx

)
, (42)

(and similarly for εy and εz). The radiation damping times are:

τx =
2

jx

E0

U0
T0, τy =

2

jy

E0

U0
T0, τz =

2

jz

E0

U0
T0. (43)

The damping partition numbers are:

jx = 1−
I4
I2

, jy = 1, jz = 2+
I4
I2

. (44)

The second and fourth synchrotron radiation integrals are:

I2 =
∮ 1

ρ2
ds, I4 =

∮
ηx

ρ

(
1

ρ2
+2k1

)
ds. (45)
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Quantum excitation

If radiation were a purely classical process, the emittances

would damp to (nearly) zero.

However, radiation is

emitted in discrete

quanta (photons).

Because of dispersion,

the horizontal betatron

amplitude of a particle

can increase when it

emits a photon.

closed orbit

photon

emission

±=0
closed orbit

±<0

The beam eventually reaches an equilibrium distribution

determined by a balance between the radiation damping and

the quantum excitation.
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Quantum excitation of longitudinal emittance

First, consider quantum excitation of longitudinal emittance.

The longitudinal emittance is a measure of the average

amplitude of synchrotron oscillations of particles in a bunch.

z

δ

u
E0

u
E0

The change in the synchrotron

amplitude of a particle when it

emits a photon depends on the

energy of the photon and on the

synchrotron phase of the particle

at the point of emission.

Since photon emission does not change the longitudinal

co-ordinate, let us begin by considering the change in energy

spread of a bunch, resulting from photon emission...
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Quantum excitation of longitudinal emittance

Suppose that the particles in a bunch emit photons with energy

distribution N(u), so that the mean square photon energy is:

⟨u2⟩ =
∫ ∞

0
N(u)u2 du. (46)

Taking into account radiation damping, the rate of change of

the mean square energy deviation of the particles is (see

Appendix D):

dσ2δ
dt

=
1

2E2
0

∫ ∞

0
Ṅ(u)u2 du−

2

τz
σ2δ , (47)

where Ṅ(u) du is the number of photons with energy between u

and u+ du emitted per unit time.
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Quantum excitation of longitudinal emittance

We assume that we can average the photon emission around

the circumference of the ring.

Then, using the results in Appendix E for the radiation

spectrum, we find that the rate of change of the mean square

energy deviation is:

dσ2δ
dt

= Cqγ
2 2

jzτz

I3
I2

−
2

τz
σ2δ , (48)

where the third synchrotron radiation integral I3 is defined:

I3 =
∮ 1

|ρ3|
ds, (49)

and the “quantum radiation constant” Cq is given by:

Cq =
55

32
√
3

ℏ
mc

(≈ 3.832× 10−13 for electrons). (50)
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Natural energy spread

Quantum excitation gives a steady increase in the mean square

energy spread, while damping gives an exponential decay.

It follows that there is an equilibrium energy spread for which

the quantum excitation is exactly balanced by the damping.

The equilibrium can be found from dσ2δ /dt = 0:

σ2δ0 = Cqγ
2 I3
jzI2

. (51)

This is often referred to as the “natural” energy spread, since

collective effects can often lead to an increase in the energy

spread with increasing bunch charge.

The natural energy spread is determined by the beam energy

and by the bending radii of the dipoles: note that it does not

depend on the RF parameters (voltage or frequency).
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Natural bunch length

The bunch length σz in a matched distribution� with energy

spread σδ is:

σz =
αpc

ωs
σδ. (52)

For a given energy spread, we can reduce the bunch length,

either:

• by increasing the RF voltage, or

• by increasing the RF frequency.

An increase in RF voltage or frequency increases the

synchrotron frequency ωs, but does not change the energy

spread.

�Note: a matched distribution in phase space has the same shape as the path
mapped out by a single particle when observed on successive turns. Neglect-
ing radiation effects, a matched distribution stays the same on successive
turns of the bunch around the ring.
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Quantum excitation of horizontal emittance

Let us now consider the quantum excitation of the horizontal
emittance.

From the change in the co-ordinate and momentum when a
particle emits radiation carrying momentum dp, we find that
the betatron action changes as:

dJx

dt
= −

w1

P0

dp

dt
+

w2

P2
0

(dp)2

dt
, (53)

where w1 and w2 are functions of the Courant–Snyder
parameters, the dispersion, the co-ordinate x and the
momentum px (see Appendix C).

In the classical approximation, we can take dp → 0 in the limit
of small time interval, dt → 0.

In this approximation, the second term on the right hand side
in the above equation vanishes, and we are left only with
damping.
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Quantum excitation of horizontal emittance

But since radiation is quantized, the limit dp → 0 is not

“physical”.

To take account of the quantization of synchrotron radiation,

we write:
dp

dt
=

1

c

∫ ∞

0
Ṅ(u)u du, (54)

and:

(dp)2

dt
=

1

c2

∫ ∞

0
Ṅ(u)u2 du. (55)

Here (as before) Ṅ(u) du is the number of photons emitted per

unit time with energy between u and u+ du.
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Quantum excitation of horizontal emittance

In Appendix E, we show that with (53), these relations lead to

the equation for the evolution of the emittance:

dεx

dt
=

2

jxτx
Cqγ

2I5
I2

−
2

τx
εx. (56)

The fifth synchrotron radiation integral I5 is given by:

I5 =
∮ H

|ρ3|
ds, (57)

where the “curly-H” function H is defined:

H = γxη
2
x +2αxηxηpx + βxη

2
px. (58)

Cq is the quantum radiation constant that we saw earlier (50).
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Equilibrium horizontal emittance

Using Eq. (56) we see that there is an equilibrium horizontal

emittance ε0, for which the damping and excitation rates are

equal:

dεx

dt
= 0 when εx = ε0 = Cq

γ2

jx

I5
I2

. (59)

Note that ε0 is determined by the beam energy, the lattice

functions (Courant–Snyder parameters and dispersion) in the

dipoles, and the bending radius in the dipoles.
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Natural emittance

ε0 is sometimes called the “natural emittance” of the lattice,

since it includes only the most fundamental effects that

contribute to the emittance: radiation damping and quantum

excitation.

Typically, third generation synchrotron light sources have

natural emittances of order a few nanometres. With beta

functions of a few metres, this implies horizontal beam sizes of

tens of microns (in the absence of dispersion).

As the current is increased, interactions between particles in a

bunch can increase the emittance above the natural emittance.
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Quantum excitation of vertical emittance

Finally, let us consider the quantum excitation of the vertical

emittance.

In principle, we can apply the formulae that we derived for the

quantum excitation of the horizontal emittance, making

appropriate substitutions of vertical quantities for horizontal

ones.

In many storage rings, the vertical dispersion in the absence of

alignment, steering and coupling errors is zero, so Hy = 0.

However, the equilibrium vertical emittance is larger than zero,

because the vertical opening angle of the radiation excites

some vertical betatron oscillations.
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Quantum excitation of vertical emittance

The fundamental lower limit on the vertical emittance, from

the opening angle of the synchrotron radiation, is given by§:

εy =
13

55

Cq

jyI2

∮
βy

|ρ3|
ds. (60)

In most storage rings, this is an extremely small value, typically

four orders of magnitude smaller than the natural (horizontal)

emittance.

In practice, the vertical emittance is dominated by magnet

alignment errors. Storage rings typically operate with a vertical

emittance that is of order 1% of the horizontal emittance, but

many can achieve emittance ratios somewhat smaller than this.

§T. Raubenheimer, SLAC Report 387, p.19 (1991).
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Summary: beam dynamics with synchrotron radiation

Including the effects of radiation damping and quantum
excitation, the emittances vary as:

ε(t) = ε(0) exp
(
−2

t

τ

)
+ ε(∞)

[
1− exp

(
−2

t

τ

)]
. (61)

The damping times are given by:

jxτx = jyτy = jzτz = 2
E0

U0
T0. (62)

The damping partition numbers are given by:

jx = 1−
I4
I2

, jy = 1, jz = 2+
I4
I2

. (63)

The energy loss per turn is given by:

U0 =
Cγ

2π
E4
0I2, Cγ = 9.846× 10−5 m/GeV3. (64)
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Summary: beam dynamics with synchrotron radiation

The natural emittance is:

ε0 = Cqγ
2 I5
jxI2

, Cq = 3.832× 10−13 m. (65)

The natural energy spread and bunch length are given by:

σ2δ = Cqγ
2 I3
jzI2

, σz =
αpc

ωs
σδ. (66)

The momentum compaction factor is:

αp =
I1
C0

. (67)

The synchrotron frequency and synchronous phase are given by:

ω2
s = −

eVrf
E0

ωrf

T0
αp cos(ϕs), sin(ϕs) =

U0

eVrf
. (68)
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Summary: synchrotron radiation integrals

The synchrotron radiation integrals are:

I1 =
∮

ηx

ρ
ds, (69)

I2 =
∮ 1

ρ2
ds, (70)

I3 =
∮ 1

|ρ|3
ds, (71)

I4 =
∮

ηx

ρ

(
1

ρ2
+2k1

)
ds, k1 =

e

P0

∂By

∂x
, (72)

I5 =
∮ Hx

|ρ|3
ds, Hx = γxη

2
x +2αxηxηpx + βxη

2
px. (73)
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Appendix A: Action–angle variables

The horizontal action Jx and phase ϕx are defined:

2Jx = γxx
2 +2αxxpx,+βxp

2
x, (74)

tan(ϕx) = −βx
px

x
− αx, (75)

where x is the transverse horizontal co-ordinate with respect to the
reference trajectory, and px is the conjugate momentum:

px =
γmvx

P0
, (76)

where γ is the relativistic factor for the particle (which has mass m), vx is
the horizontal velocity, and P0 is the reference momentum.

The quantities αx, βx and γx are the Courant–Snyder parameters
(sometimes called the Twiss parameters), and satisfy:

βxγx − α2
x = 1. (77)

Corresponding definitions apply for the vertical action-angle variables (Jy, ϕy)
in terms of y and py, and for the longitudinal action-angle variables (Jz, ϕz)
in terms of z and δ.
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Appendix A: Action–angle variables

Inverting (74) and (75) gives:

x =
√

2βxJx cos(ϕx), (78)

px = −

√
2Jx

βx
(sin(ϕx) + αx cos(ϕx)) . (79)

If the angles ϕx of the particles in a bunch are uncorrelated, so that:

⟨sin(ϕx)⟩ = ⟨cos(ϕx)⟩ = 0, (80)

where the brackets ⟨·⟩ represent an average over all particles in a bunch,
then:

⟨x⟩ = ⟨px⟩ = 0, (81)

i.e. the centroid of the bunch has no horizontal offset (or momentum) with
respect to the reference trajectory.

In that case, the second order moments of the beam distribution are:

⟨x2⟩ = βxεx, ⟨xpx⟩ = −αxεx, ⟨p2x⟩ = γxεx, (82)

where the horizontal emittance εx is given by:

εx = ⟨Jx⟩ =
√

⟨x2⟩⟨p2x⟩ − ⟨xpx⟩2. (83)
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Appendix B: Energy loss per turn and longitudinal damping

The energy loss per turn U for a particle is found by integrating the
radiation power over one orbit of the ring:

U =
1

c

∮
Pγ

(
1+

ηx

ρ
δ

)
ds =

Cγ

2π
e2c2E2

∮
B2

(
1+

ηx

ρ
δ

)
ds, (84)

where ρ is the radius of curvature of the reference trajectory, and the
radiation power Pγ is given by (18).

Using Bρ ≈ E/ec, we find that for a particle with the reference energy E0

following the reference trajectory, the energy loss per turn is:

U0 =
Cγ

2π
E4

0I2, (85)

where the second synchrotron radiation integral is:

I2 =

∮
1

ρ2
ds. (86)
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Appendix B: Energy loss per turn and longitudinal damping

The longitudinal damping constant αE (15) is given by the derivative of U
with respect to the energy E.

To calculate αE, we have to take into account the fact that the dipoles in
the ring may have a field gradient: if they do, then the field seen by a
particle will depend on its trajectory through the dipole, and hence (because
of dispersion) on its energy.

If the dipoles have a field gradient:

B = B0 +
E0

ec
k1ηxδ, (87)

where E0 is the reference energy, the energy loss per turn (84) becomes:

U =
Cγ

2π
e2c2E2

0(1 + δ)2
∮ (

B0 +
E0

ec
k1ηxδ

)2(
1+

ηx

ρ
δ

)
ds. (88)

Then, using E = (1+ δ)E0, we find:

dU

dE

∣∣∣∣
E=E0

=
1

E0

dU

dδ

∣∣∣∣
δ=0

= 2
U0

E0
+

1

E0

Cγ

2π
e2c2E2

0

∮ (
B2

0ηx

ρ
+2

B0E0

ec
k1ηx

)
ds.

(89)
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Appendix B: Energy loss per turn and longitudinal damping

From (85), we can write:

Cγ

2π
e2c2E2

0 =
e2c2

E2
0

U0

I2
. (90)

Using (90), equation (89) becomes:

dU

dE

∣∣∣∣
E=E0

= 2
U0

E0
+

U0

E0I2

∮
ec

E0
B0ηx

(
ec

E0

B0

ρ
+2k1

)
ds =

(
2+

I4

I2

)
U0

E0
, (91)

where the fourth synchrotron radiation integral I4 is:

I4 =

∮
ec

E0
B0ηx

(
ec

E0

B0

ρ
+2k1

)
ds =

∮
ηx

ρ

(
1

ρ2
+2k1

)
ds, (92)

where, in the final step, we have again used B0ρ ≈ E0/ec.

Hence, we have finally for the longitudinal damping constant:

αE =
1

2T0

dU

dE

∣∣∣∣
E=E0

=
jz

2T0

U0

E0
, (93)

where jz = 2+ I4/I2 is the longitudinal damping partition number.
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Appendix C: Radiation damping of horizontal emittance

In this Appendix, we derive the expression for radiation damping of the
horizontal emittance:

dεx

dt
= −

2

τx
εx, (94)

where:

τx =
2

jx

E0

U0
T0, jx = 1−

I4

I2
. (95)

To derive these formulae, we proceed as follows:

1. We find an expression for the change of horizontal action of a single
particle when emitting radiation with momentum dp.

2. We integrate around the ring to find the change in action per revolution
period.

3. We average the action over all the particles in the bunch, to find the
change in emittance per revolution period.
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Appendix C: Radiation damping of horizontal emittance

To begin, we note that, in the presence of dispersion, the action Jx is
written:

2Jx = γxx̃
2 +2αxx̃p̃x + βxp̃

2
x, (96)

where:

x̃ = x− ηxδ, and p̃x = px − ηpxδ. (97)

After emission of radiation carrying momentum dp, the variables change to:

δ′ = δ −
dp

P0
, x̃′ = x̃+ ηx

dp

P0
, p̃ ′

x = p̃x

(
1−

dp

P0

)
+ ηpx(1− δ)

dp

P0
. (98)

We write the resulting change in the action as:

J ′
x = Jx + dJx. (99)
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Appendix C: Radiation damping of horizontal emittance

Substituting the new values (98) into the expression for the horizontal
action (96), we find that the change in the horizontal action is:

dJx = −
w1

P0
dp+

w2

P 2
0

dp2 ∴
dJx

dt
= −

w1

P0

dp

dt
+

w2

P 2
0

dp2

dt
, (100)

where, in the limit δ → 0:

w1 = αxxpx + βxp
2
x − ηx(γxx+ αxpx)− ηpx(αxx+ βxpx), (101)

and:

w2 =
1

2

(
γxη

2
x +2αxηxηpx + βxη

2
px

)
− (αxηx + βxηpx) px +

1

2
βxp

2
x. (102)

Treating radiation as a classical phenomenon, we can take the limit dp → 0
in the limit of small time interval, dt → 0.

In this approximation:

dJx

dt
≈ −w1

1

P0

dp

dt
≈ −w1

Pγ

P0c
, (103)

where Pγ is the rate of energy loss of the particle through synchrotron
radiation.
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Appendix C: Radiation damping of horizontal emittance

To find the average rate of change of horizontal action, we integrate over
one revolution period:

dJx

dt
= −

1

T0

∮
w1

Pγ

P0c
dt. (104)

We have to be careful changing the variable
of integration where the reference trajectory
is curved:

dt =
dC

c
=

(
1+

x

ρ

)
ds

c
. (105)

So:

dJx

dt
= −

1

T0P0c2

∮
w1Pγ

(
1+

x

ρ

)
ds, (106)

where the rate of energy loss is:

Pγ =
Cγ

2π
c3e2B2E2. (107)

x

ρ

reference
trajectory,
length ds

particle trajectory,
length dC

dθ
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Appendix C: Radiation damping of horizontal emittance

We have to take into account the fact that the field strength in a dipole can
vary with position. To first order in x we can write:

B = B0 + x
∂By

∂x
. (108)

Substituting Eq. (108) into (107), and with the use of (101), we find (after
some algebra!) that, averaging over all particles in the beam:∮ 〈

w1Pγ

(
1+

x

ρ

)〉
ds = cU0

(
1−

I4

I2

)
εx, (109)

where:

U0 =
Cγ

2π
cE4

0I2, I2 =

∮
1

ρ2
ds, I4 =

∮
ηx

ρ

(
1

ρ2
+2k1

)
ds, (110)

and k1 is the normalised quadrupole gradient in the dipole field:

k1 =
e

P0

∂By

∂x
. (111)
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Appendix C: Radiation damping of horizontal emittance

Combining Eqs. (106) and (109) we have:

dεx

dt
= −

1

T0

U0

E0

(
1−

I4

I2

)
εx. (112)

Defining the horizontal damping time τx:

τx =
2

jx

E0

U0
T0, jx = 1−

I4

I2
, (113)

the evolution of the horizontal emittance can be written:

dεx

dt
= −

2

τx
εx. (114)

The quantity jx is called the horizontal damping partition number.

For most synchrotron storage ring lattices, if there is no gradient in the
dipoles then jx is very close to 1.
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Appendix D: Quantum excitation of longitudinal emittance

Consider a particle with longitudinal co-ordinate z and energy deviation δ,
which emits a photon of energy u.

In terms of the amplitude δ0 of the energy oscillation and the synchrotron
phase θ, the energy deviation δ′ and longitudinal co-ordinate z′ after the
photon emission are:

z

δ

u
E0

θ

δ0
δ0́

δ′ = δ′0 sin(θ
′) = δ0 sin(θ)−

u

E0
. (115)

z′ =
αpc

ωs
δ′0 cos(θ

′) =
αpc

ωs
δ0 cos(θ). (116)

∴ δ′20 = δ20 − 2δ0
u

E0
sin(θ) +

u2

E2
0

. (117)

Averaging over the bunch gives:

∆σ2
δ =

⟨u2⟩
2E2

0

where σ2
δ = ⟨δ2⟩ =

1

2
⟨δ20⟩. (118)
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Appendix D: Quantum excitation of longitudinal emittance

Let us write the number of photons emitted per unit time with energy
between u and u+ du as Ṅ(u) du. Then:

d⟨u2⟩
dt

=

∫ ∞

0
Ṅ(u)u2 du. (119)

Including radiation damping, the energy spread evolves as:

dσ2
δ

dt
=

1

2E2
0

〈∫ ∞

0
Ṅ(u)u2 du

〉
C

−
2

τz
σ2
δ , (120)

where the brackets ⟨ ⟩C represent an average around the ring.

Using Eq. (129) from Appendix E for
∫
Ṅ(u)u2 du, we find:

dσ2
δ

dt
= Cqγ

2 2

jzτz

I3

I2
−

2

τz
σ2
δ , (121)

where the third synchrotron radiation integral I3 is defined:

I3 =

∮
1

|ρ3|
ds, (122)

and the “quantum radiation constant” is:

Cq =
55

32
√
3

ℏ
mc

(≈ 3.832× 10−13m for electrons). (123)
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Appendix E: Quantum excitation of horizontal emittance

In deriving the equation of motion (106) for the action of a particle emitting
synchrotron radiation, we made the classical approximation that in a time
interval dt, the momentum dp of the radiation emitted goes to zero as dt
goes to zero.

In reality, emission of radiation is quantized, so writing “dp → 0” actually
makes no sense.

Taking into account the quantization of radiation, the equation of motion
for the action (100) should be written:

dJx

dt
= −

w1

P0c

∫ ∞

0
Ṅ(u)u du+

w2

P 2
0 c

2

∫ ∞

0
Ṅ(u)u2 du, (124)

where Ṅ(u) is the number of photons emitted per unit time in the energy
range from u to u+ du.

The first term on the right hand side of Eq. (124) just gives the same
radiation damping as in the classical approximation.

The second term on the right hand side of Eq. (124) is an excitation term
that we previously neglected.
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Appendix E: Quantum excitation of horizontal emittance

To proceed, we find expressions for the integrals
∫
Ṅ(u)u du and∫

Ṅ(u)u2 du.

The required expressions can be found from the spectral distribution of
synchrotron radiation from a dipole magnet. This is given by:

dP
dϑ

=
9
√
3

8π
Pγϑ

∫ ∞

ϑ

K5/3(x) dx, (125)

where dP/dϑ is the energy radiated per unit time per unit frequency range,
and ϑ = ω/ωc is the radiation frequency ω divided by the critical frequency ωc:

ωc =
3

2

γ3c

ρ
. (126)

Pγ is the total energy radiated per unit time, and K5/3(x) is a modified
Bessel function.
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Appendix E: Quantum excitation of horizontal emittance

Since the energy of a photon of frequency ω is u = ℏω, it follows that:

Ṅ(u) du =
1

ℏω
dP
dϑ

dϑ. (127)

Using (125) and (127), we find:∫ ∞

0
Ṅ(u)u du = Pγ, (128)

and: ∫ ∞

0
Ṅ(u)u2 du = 2Cqγ

2E0

ρ
Pγ. (129)

Cq is a constant given by:

Cq =
55

32
√
3

ℏ
mc

≈ 3.832× 10−13m. (130)
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Appendix E: Quantum excitation of horizontal emittance

The final step is to substitute for the integrals in (124) from (128) and
(129), substitute for w1 and w2 from (101) and (102), average over the
circumference of the ring, and average also over all particles in the beam.

Then, since εx = ⟨Jx⟩, we find (for x ≪ ηx and px ≪ ηpx):

dεx

dt
= −

2

τx
εx +

2

jxτx
Cqγ

2I5

I2
(131)

where the fifth synchrotron radiation integral I5 is given by:

I5 =

∮
Hx

|ρ3|
ds, (132)

The “curly-H” function Hx is given by:

Hx = γxη
2
x +2αxηxηpx + βxη

2
px. (133)

The damping time and horizontal damping partition number are given by:

jxτx = 2
E0

U0
T0, U0 =

Cγ

2π
cE4

0I2, (134)

(U0 is the energy loss per turn) and:

jx = 1−
I4

I2
. (135)
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Appendix E: Quantum excitation of horizontal emittance

Note that the excitation term is independent of the emittance.

The quantum excitation does not simply modify the damping time, but
leads to a non-zero equilibrium emittance.

The equilibrium emittance ε0 is determined by the condition:

dεx

dt

∣∣∣∣
εx=ε0

= 0. (136)

From (131), we see that the equilibrium emittance is given by:

ε0 = Cqγ
2 I5

jxI2
. (137)
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