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Emittance

The emittance of an electron
beam is a measure of the area
occupied by the beam in phase
space.

In the absence of coupling and
dispersion, the horizontal
emittance is given by:

er = (2D (P2) — (@p)2. (1)

With some approximations, the emittance of a beam remains
constant as the beam moves around a storage ring.

In a lattice with given focusing strength (i.e. fixed optics), a
smaller emittance leads to a smaller beam size.
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Brightness is a key figure of merit for SR sources

radiation power per unit bandwidth

Brightness =
phase space area of source

(2)
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High photon brightness needs low electron beam emittance
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Low emittance is important for colliders

Luminosity is a key figure of merit for colliders. The luminosity
depends directly on the horizontal and vertical emittances.

H
s
R
3
L

Dynamical effects associated with the collisions mean that it is
sometimes helpful to increase the horizontal emittance; but
generally, reducing the vertical emittance as far as possible
helps to increase the luminosity.
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LLecture 1 objectives: linear dynamics with synchrotron radiation

In this lecture, we shall:

e describe the damping of synchrotron and betatron
oscillations by the emission of electromagnetic radiation;

e discuss how quantum excitation leads to equilibrium values
for the longitudinal and transverse beam emittances;

e give expressions for the damping times and equilibrium
emittances in terms of the synchrotron radiation integrals.
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Damping of synchrotron oscillations

Our first goal is to understand how synchrotron radiation leads
to the damping of synchrotron oscillations.

We shall proceed as follows:

e \We write down the equations of motion for a particle
performing synchrotron motion, including the radiation
energy loss.

e \We express the energy loss per turn as a function of the
energy of the particle: this leads to a “damping term’” into
the equations of motion.

e Solving the equations of motion gives synchrotron
oscillations with amplitude that decays exponentially.
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Damping of synchrotron oscillations

We describe the longitudinal motion of a particle in a storage
ring in terms of the variables z and 9.

The co-ordinate z is the YA
longitudinal position of a
particle with respect to a I \
reference particle. .
particle
\reference

S trajectory

The reference particle is
moving round the ring on
the reference trajectory, with
the reference energy Ejg.

o is the energy deviation of a particle with energy FE:
__E - Ej
— B

) (3)
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Damping of synchrotron oscillations

Va

A particle moving around
a storage ring gains /\__\.\_--ev=Uo /\
energy from the RF >
cavities, and loses energy t=-z/c
by synchrotron radiation. v v
Averaged over one turn, the change in energy deviation ¢ is:

As = g (qbs _ “’rf’z) v (4)

E c Eo

where V¢ is the RF voltage, ws the RF frequency, and U is the
energy lost by the particle through synchrotron radiation.

The “synchronous phase” ¢s is defined by the condition:

Ug
eVrf.

Ad =0 when z=0 and § =0, i.e. sin(¢s) = (5)
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Damping of synchrotron oscillations

The change in the longitudinal co-ordinate z as a particle
makes one turn around a storage ring (circumference Cp) is
given by the momentum compaction factor ayp:

Az = —apCpo. (6)
The momentum compaction factor can
be written: particle trajectory,
length dC
1
pr — —1, (7) I //
Co m
\  trajectory, /I
where the first synchrotron radiation \  length ds
integral Iy is:
P
n== 75 (8) Vo
d5 §=0 \ d ;
—

Here, n, is the dispersion, and p is the ..
radius of curvature at a given point along \/
the beam trajectory.
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Damping of synchrotron oscillations

et us assume that over a single revolution, the change in the
energy deviation Ad and the change in the longitudinal
co-ordinate Az are both small.

In that case, we can write the longitudinal equations of motion
for the particle:

dd | U

RRE— EVif Sin(gbs . wer) . 7 (9)
dt EoTo C EoqTo

dz

- = —aypcd, (10)

where Ty = Cp/c is the revolution period.

In solving these equations, we need to take into account the
fact that the energy loss per turn U depends on the energy
deviation §...
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Damping of synchrotron oscillations

The energy loss per turn U depends on the energy of the

particle: particles with higher energy radiate more synchrotron
radiation power.

Assuming that |§] < 1, we work to first order in §, so that:

dU dU
U=Uy+ AE — = Up + Eqd — : 11
0 dE | E=E, 0 0 dE | E=E, (11)

Also, we assume that the particle arrives at each RF cavity at a
phase close to the synchronous phase, so that:

. Wrfl
sm(qbs ads

i ) ~ sin(¢s) — cos(¢s)

(12)

C
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Damping of synchrotron oscillations

With these assumptions, and combining the equations of
motion (9) and (10) we find the equation of motion for the
energy deviation:

d26
dt2
where the synchrotron oscillation frequency ws is given by

—|—2aE——|—w25—O (13)

2 eVir Wrf
= — COS ——ap, 14
Wg EO (QbS) TO D ( )
and the damping constant ag is:
1 dU
ap = — — . (15)
219 dEE=E;,

Equation (13]) is the equation of motion for a damped harmonic
oscillator, with frequency ws and damping constant apg.

*Note that for stable oscillations, we require cos(¢s) < O.
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Damping of synchrotron oscillations

If ap < ws, the energy deviation and longitudinal co-ordinate
vary as:

0(t) = dg e QE? sin(wst — 0g), (16)
ApC o —apt

z(t) = doe YE' cos(wst — Op), (17)
Ws

where dg and 0y are constants (respectively, the amplitude and
phase of the oscillation at t = 0).

To evaluate the damping constant ag, we need to know how
the energy loss per turn U depends on the particle energy FE...
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Damping of synchrotron oscillations

From classical electromagnetic theory, an ultrarelativistic
particle (8 =wv/c~ 1) with energy E in a magnetic field B emits
electromagnetic radiation with power:

2

C e
Py~ 2; e’c3E?B?,  where ny=3€0(m02)4. (18)

For electrons, C., ~ 8.846 x 10~°m/GeV>.

To find the energy loss per turn, we integrate P, over one
revolution period. For a particle on the reference trajectory,
with 6§ = 0, we find (see Appendix B):

C
Ug = —LEZ I, (19)
27
where the second synchrotron radiation integral is:
1
I, = ]f—zds. (20)
P
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Damping of synchrotron oscillations

To find the damping constant agr (15) we need (again from
Appendix B):

dU .U
— = jor>, (21)
dE | E=E, Ep
where j, is the longitudinal damping partition number:
_ I
je =242 (22)
I
The fourth synchrotron radiation integral I accounts for
dispersion and any field gradient in the dipoles:
1 0B
Iy = j[”_fc 4 0ky | ds, where k; = <22V (23)
o \ p? Eq Ox

If the dipoles have no field gradient, then usually I, < I, in
which case j, =~ 2.
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Damping of synchrotron oscillations

The longitudinal damping time 7, is defined by:
1 2 Ey

Ty = — = ——1p.
) JzUp

The longitudinal emittance can be defined as:

£, = \/ — (26)°.

(24)

(25)

Since the amplitudes of the synchrotron oscillations decay with
time constant 7, the damping of the longitudinal emittance

can be written:

e2(t) = £2(0) exp(—zTiz) ,

where £,(0) is the longitudinal emittance at t = 0.

(26)
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Damping of betatron oscillations

Let us now consider the effect of synchrotron radiation on
betatron oscillations.

In the case of synchrotron oscillations, we assumed that the
changes in the longitudinal variables were small over a single
turn around the ring.

In other words, we assumed that the synchrotron frequency was
small compared to the revolution frequency.

This is not a valid assumption in the case of betatron
oscillations, so we shall have to take a different approach to the
analysis.

We shall first consider vertical betatron oscillations: this turns
out to be a simpler case than horizontal betatron oscillations.
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Damping of betatron oscillations

We describe the vertical YA

motion of a particle in a

storage ring in terms of the .\x*ﬁ
variables y and py. reference |

particle

The co-ordinate y is the
vertical position of a particle
with respect to the
reference trajectory.

reference
) trajectory

The conjugate momentum p, is the vertical momentum of a
particle scaled by the reference momentum PFpy:
__ Yy
py PO )
where « is the relativistic factor, and vy is the vertical velocity
of the particle.

(27)
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Damping of vertical emittance

Radiation damping of betatron oscillations is a result of
particles losing momentum by emitting synchrotron radiation.

Synchrotron radiation is
emitted in a narrow cone
(opening angle 1/~)
around the direction of
motion of the particle.

If a particle emits
radiation with
momentum AP, the
change in the vertical
conjugate momentum of
the particle is:

AP
0
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Damping of vertical emittance

The amplitude of the betatron oscillations of a given particle
can be characterised by the betatron action:

2Jy = vy + 2ayypy + Byp;. (29)

T he vertical emittance of a beam is the average of the vertical
betatron action of all particles in the beam:

ey = (Jy). (30)

If all particles (at random betatron phases) lose an equal
amount of momentum AP, the change in vertical emittance is
found to be (an exercise for the student![i)):

A€y — <AJy> — —€y?o. (31)

fThe results in Appendix A may be useful.
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Damping of vertical emittance

In the absence of radiation effects, the action J, of each particle
remains constant as the particles move round a storage ring.

Then, assuming that the rate of change of emittance (from
emission of radiation) is slow compared to the revolution
frequency, the rate of change of the emittance can be found by
averaging the momentum loss around the ring:

d dP U, 2
v _ %Y N e =24, (32)
dt 1o Py EqTo Ty

Here, Tp is the revolution period, Eg is the reference energy,
and Up is the energy loss in one turn.

The approximation in the above formulae is valid for an
ultra-relativistic particle, which has E =~ Pec.
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Damping of vertical emittance

The evolution of the vertical emittance is given by:

t
Ty
where the vertical damping time 7y is:
E
7y = 2-2Tp. (34)
Ug

Note the similarity with the formula for the evolution of the
longitudinal emittance (26)):

t
e (1) = £-(0) exp(—2—> | (35)
Tz
where the longitudinal damping time is:
2 F
=971, (36)
72 Ug

Since (in many cases) j, ~ 2, the vertical damping time is often
about twice the longitudinal damping time.
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Damping of vertical emittance

Typically, in an electron storage ring, the damping time is of
order several tens of milliseconds, while the revolution period is
of order of a microsecond.

Therefore, radiation effects are indeed “slow” compared to the
revolution frequency.

But note that we made the assumption that the momentum of
the particle was close to the reference momentum, i.e. P = Fj.

If the particle continues to radiate without any restoration of
energy, eventually this assumption will no longer be valid...
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Damping of vertical emittance

However, electron storage rings contain RF cavities to restore
the energy lost through synchrotron radiation. But then, we
should consider the change in momentum of a particle as it
moves through an RF cavity.

RF cavities are usually
designed to provide a

longitudinal electric field.

There is then no change in —
the transverse momentum
when a particle passes
through the cavity.

\
\{

T herefore, we do not have to consider explicitly the effects of
RF cavities on the emittance of the beam.
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Damping of horizontal emittance

Analysis of radiation effects on the vertical emittance was
relatively straightforward. When we consider the horizontal
emittance, there are three complications that we need to
address:

e [ he horizontal motion of a particle is often strongly
coupled to the longitudinal motion (by dispersion): when a
particle emits radiation, its horizontal co-ordinate with
respect to the closed orbit will change.

e Where the reference trajectory is curved (usually, in
dipoles), the path length taken by a particle depends on the
horizontal co-ordinate with respect to the reference
trajectory.

e Dipole magnets are sometimes built with a gradient, so
that the vertical field seen by a particle in a dipole depends
on the horizontal co-ordinate of the particle.
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Damping of horizontal emittance

Taking all the above effects into account, we can proceed along
the same lines as for the analysis of the vertical emittance:

e Write down the changes in co-ordinate x and momentum p, resulting
from an emission of radiation with momentum dp (taking into account
the additional effects of dispersion).

e Substitute expressions for the new co-ordinate and momentum into the
expression for the horizontal betatron action, to find the change in the
action resulting from the radiation emission.

e Average over all particles in the beam, to find the change in the
emittance resulting from radiation emission from each particle.

e Integrate around the ring (taking account of changes in path length
and field strength with z in the bends) to find the change in emittance
over one turn.

The algebra gets somewhat cumbersome, and is not especially
enlightening. See Appendix C for more details. Here, we just
quote the result...
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Damping of horizontal emittance

The horizontal emittance decays exponentially:

d 2
T L, (37)
dt Tx
where the horizontal damping time is given by:
2 F
e = — 97, (38)
Jz Ug

, I
jr=1-2, (39)
I
where the fourth synchrotron radiation integral is given by (23):
1:%-— 2ky | ds. ky = 22V 40
4 , <p2 + 1) s e (40)
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Summary: synchrotron radiation damping

The energy loss per turn is given by:

C
Up = Q—’VEgJQ, Cy /= 8.846 x 107 °m/GeV>. (41)
7T
The emittances damp exponentially:
t
ex(t) = e o0€XP (—2—) : (42)
Tx
(and similarly for ¢y and e;). The radiation damping times are:
2 F 2 F 2 F
o= "OTpy, my=-"CTy 7=—""Tp. (43)
Jjz Ug Jy Uo 72 Up
The damping partition numbers are:
. I . . 1
szl——47 Jyzla ]z:2‘|'—4- (44)
I I
The second and fourth synchrotron radiation integrals are:
1 1
I, = jc[—zds, I, = 7{% <—2 + 2k1> ds. (45)
p p \p
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Quantum excitation

If radiation were a purely classical process, the emittances
would damp to (nearly) zero.

However, radiation is photon
emitted in discrete en
quanta (photons).

Because of dispersion,
the horizontal betatron closed orbit
amplitude of a particle
can increase when it
emits a photon.

/" closed orbit

0<0

The beam eventually reaches an equilibrium distribution
determined by a balance between the radiation damping and
the quantum excitation.
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Quantum excitation of longitudinal emittance

First, consider quantum excitation of longitudinal emittance.

The longitudinal emittance is a measure of the average
amplitude of synchrotron oscillations of particles in a bunch.

O A

The change in the synchrotron

y amplitude of a particle when it
E@l A emits a photon depends on the
; } \ —»

TR energy of the photon and on the
//{ELLB synchrotron phase of the particle

at the point of emission.

Since photon emission does not change the longitudinal
co-ordinate, let us begin by considering the change in energy
spread of a bunch, resulting from photon emission...
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Quantum excitation of longitudinal emittance

Suppose that the particles in a bunch emit photons with energy
distribution N(u), so that the mean square photon energy is:

<u2) = /OOO N(w)u? du. (46)

Taking into account radiation damping, the rate of change of
the mean square energy deviation of the particles is (see
Appendix D):

2 5

do? 1 0o
2% — N(uw)u? du — —0

e — 47
dt  2E3Jo T (47)

where N(u)du is the number of photons with energy between u
and u + du emitted per unit time.
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Quantum excitation of longitudinal emittance

We assume that we can average the photon emission around
the circumference of the ring.

Then, using the results in Appendix E for the radiation
spectrum, we find that the rate of change of the mean square
energy deviation is:

do? 2 I3 2
=22 - ZoF, (48)
where the third synchrotron radiation integral I3 is defined:
I3 = 7{ g ds (49)
and the “quantum radiation constant” Cq is given by:
55 h
Cq = (~ 3.832 x 10~ 13 for electrons). (50)
32v/3mec
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Natural energy spread

Quantum excitation gives a steady increase in the mean square
energy spread, while damping gives an exponential decay.

It follows that there is an equilibrium energy spread for which
the quantum excitation is exactly balanced by the damping.
The equilibrium can be found from do?/dt = O:

I3

jz]2.

This is often referred to as the “natural” energy spread, since
collective effects can often lead to an increase in the energy
spread with increasing bunch charge.

The natural energy spread is determined by the beam energy
and by the bending radii of the dipoles: note that it does not
depend on the RF parameters (voltage or frequency).
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Natural bunch length

The bunch length o, in a matched distribution@ with energy
spread oy is:

0, = 0. (52)

For a given energy spread, we can reduce the bunch length,
either:

e by increasing the RF voltage, or

e by increasing the RF frequency.

An increase in RF voltage or frequency increases the
synchrotron frequency wg, but does not change the energy
spread.

INote: a matched distribution in phase space has the same shape as the path
mapped out by a single particle when observed on successive turns. Neglect-
ing radiation effects, a matched distribution stays the same on successive
turns of the bunch around the ring.
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Quantum excitation of horizontal emittance

Let us now consider the quantum excitation of the horizontal
emittance.

From the change in the co-ordinate and momentum when a
particle emits radiation carrying momentum dp, we find that
the betatron action changes as:

dJy _ widp | wo(dp)?

@ Podt P2 dt

where wy1 and wo are functions of the Courant—Snyder
parameters, the dispersion, the co-ordinate x and the
momentum p, (see Appendix C).

(53)

In the classical approximation, we can take dp — 0 in the limit
of small time interval, dt — O.

In this approximation, the second term on the right hand side
in the above equation vanishes, and we are left only with
damping.
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Quantum excitation of horizontal emittance

But since radiation is quantized, the limit dp — 0O is not
“physical’.

To take account of the quantization of synchrotron radiation,
we write:

dp 1 [oo .
L A du, 54
- /O (u) u du (54)
and:
(dp)2

—/ N (u) u? du. (55)

Here (as before) N(u)du is the number of photons emitted per
unit time with energy between v and u + du.
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Quantum excitation of horizontal emittance

In Appendix E, we show that with (53)), these relations lead to
the equation for the evolution of the emittance:

d 2 1 2
ez _ —C 72—5 — —€g. (56)

The fifth synchrotron radiation integral Is is given by:

jq{ 3 (57)
where the “curly-H” function H is defined:

H = ’Yaﬂ?;% + 2C¥x77m77px + /833775;[3 (58)

Cy is the quantum radiation constant that we saw earlier (50)).
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Equilibrium horizontal emittance

Using Eq. (56)) we see that there is an equilibrium horizontal
emittance ¢g, for which the damping and excitation rates are

equal:

d 21
dt Jx —72

(59)
Note that g is determined by the beam energy, the lattice
functions (Courant—Snyder parameters and dispersion) in the
dipoles, and the bending radius in the dipoles.
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Natural emittance

o IS sometimes called the “natural emittance” of the lattice,
since it includes only the most fundamental effects that
contribute to the emittance: radiation damping and quantum
excitation.

Typically, third generation synchrotron light sources have
natural emittances of order a few nanometres. With beta
functions of a few metres, this implies horizontal beam sizes of
tens of microns (in the absence of dispersion).

As the current is increased, interactions between particles in a
bunch can increase the emittance above the natural emittance.
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Quantum excitation of vertical emittance

Finally, let us consider the quantum excitation of the vertical
emittance.

In principle, we can apply the formulae that we derived for the
quantum excitation of the horizontal emittance, making
appropriate substitutions of vertical quantities for horizontal
ones.

In many storage rings, the vertical dispersion in the absence of
alignment, steering and coupling errors is zero, so Hy = 0.

However, the equilibrium vertical emittance is larger than zero,
because the vertical opening angle of the radiation excites
some vertical betatron oscillations.
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Quantum excitation of vertical emittance

The fundamental lower limit on the vertical emittance, from
the opening angle of the synchrotron radiation, is given by@:

13 Cy [
ey = ——qj{ﬁds. (60)

In most storage rings, this is an extremely small value, typically
four orders of magnitude smaller than the natural (horizontal)
emittance.

In practice, the vertical emittance is dominated by magnet

alignment errors. Storage rings typically operate with a vertical
emittance that is of order 1% of the horizontal emittance, but
many can achieve emittance ratios somewhat smaller than this.

ST. Raubenheimer, SLAC Report 387, p.19 (1991).
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Summary: beam dynamics with synchrotron radiation

Including the effects of radiation damping and quantum
excitation, the emittances vary as:

t t
e(t) = e(0) exp (—2—) + £(o0) [1 — exp (—2—)] : (61)
T T
The damping times are given by:
, E
Uo

The damping partition numbers are given by:

Je=1——, jy=1, Jz =2+ —. (63)

The energy loss per turn is given by:

C
= YEjl,,  Cy=9.846x 107> m/GeV>. (64)

U
0 27
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Summary: beam dynamics with synchrotron radiation

The natural emittance is:

I
e0 = Cyy°—>, Cy=3.832x 10713 m. (65)

The natural energy spread and bunch length are given by:

I
2 13 oy = apca(;. (66)

szQ’ Ws

o5 = Cq

The momentum compaction factor is:

_ I
Ckp —

= (67)

The synchrotron frequency and synchronous phase are given by:

> eV wrf - Uo
= — ——qp COS : Sin = : 63
W Eo To Ap (¢s) (¢s) eV (68)
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Summary: synchrotron radiation integrals

The synchrotron radiation integrals are:

Il — n—de,

I

I
~e—,
bw‘ —_

B

"

|
\e\
‘.-l

QL

\.CID

o2
1 0B
Ip = 7{77_9; — + 2k1 | ds, k= ——Y
p \p? Py Ox
_ [ Ha _ .2 2
Is = f{ PE ds, Hae = vang + 20anznpz + Banpy-

(69)

(70)

(71)

(72)

(73)
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Appendices
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Appendix A: Action—angle variables

The horizontal action J, and phase ¢, are defined:

2J, = 'meQ + 2amxp$) +B$p§7 (74)

where x is the transverse horizontal co-ordinate with respect to the
reference trajectory, and p, is the conjugate momentum:

Y MU
Pz — P ,

where ~ is the relativistic factor for the particle (which has mass m), v, is
the horizontal velocity, and Fy is the reference momentum.

(76)

The quantities a,, B, and ~, are the Courant—Snyder parameters
(sometimes called the Twiss parameters), and satisfy:

BeYe — ozg = 1. (77)

Corresponding definitions apply for the vertical action-angle variables (Jy, ¢,)
in terms of y and p,, and for the longitudinal action-angle variables (J., ¢.)
in terms of z and $.
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Appendix A: Action—angle variables

Inverting (74)) and ([75]) gives:
x = +/2BzJ;Ccos(¢,), (78)

pe = —,/25']‘” (sin(6s) + s cOS(62)) (79)

If the angles ¢, of the particles in a bunch are uncorrelated, so that:

(sin(¢z)) = (cos(¢z)) = O, (80)

where the brackets (-) represent an average over all particles in a bunch,
then:

() = (pz) = 0, (81)
i.e. the centroid of the bunch has no horizontal offset (or momentum) with
respect to the reference trajectory.

In that case, the second order moments of the beam distribution are:

(%) = Bugw, (Tps) = —ues, (P2) = Vutu, (82)
where the horizontal emittance ¢, is given by:
co = (Ja) = \/ (@) (p2) — (wp.)2. (83)
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Appendix B: Energy loss per turn and longitudinal damping

The energy loss per turn U for a particle is found by integrating the
radiation power over one orbit of the ring:

1 T C e
U= —j{Pv <1 -+ e ) ds = JeQCQEQj{BQ (1 + 77—5) ds, (84)
c P 21 P

where p is the radius of curvature of the reference trajectory, and the
radiation power P, is given by (|18)).

Using Bp =~ E/ec, we find that for a particle with the reference energy Ejp
following the reference trajectory, the energy loss per turn is:

Cy

2T
where the second synchrotron radiation integral is:
1
P
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Appendix B: Energy loss per turn and longitudinal damping

The longitudinal damping constant ag (15]) is given by the derivative of U
with respect to the energy FE.

To calculate ag, we have to take into account the fact that the dipoles in
the ring may have a field gradient: if they do, then the field seen by a
particle will depend on its trajectory through the dipole, and hence (because
of dispersion) on its energy.

If the dipoles have a field gradient:

E
B = Bo + — k119, (87)
ecC
where Ej is the reference energy, the energy loss per turn (84]) becomes:
C E 2 .
U= ""ec?E5(1 + 5)2j{ (Bo + —Okmxé) <1 + ) ds. (88)
21 ec o)

Then, using £ = (1 + 6)Ey, we find:

dU 1 dU U 1C B2n, BoFE
- = = 220 + 76202E87{ o'/ + 2 2 Oklnm ds.

(89)
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Appendix B: Energy loss per turn and longitudinal damping

From ([85]), we can write:

Using (90]), equation (89) becomes:

dU U U, B I

e =220 4 0 fecBonw(E—oJrzkl) ds=(2—|——4)

dE|p—p, Eqo  Eol> ) Ej FEo p 1>
where the fourth synchrotron radiation integral 14 is:

ec ec Bo Ne (1
Is = ¢ — Bone (—— + 2k1> ds = ]{— (— + 2k1> ds,
Eo Eo p p \p?
where, in the final step, we have again used Bpp ~ Ep/ec.

Hence, we have finally for the longitudinal damping constant:

1 dU

_ ov _ jz UO
270 dFE

E=E, B 2T0E_07

OF

where j, = 2 4 I4/1> is the longitudinal damping partition number.

(90)

(91)

(92)

(93)

Dynamics with Synchrotron Radiation 51



Appendix C: Radiation damping of horizontal emittance

In this Appendix, we derive the expression for radiation damping of the
horizontal emittance:

de 2
2 =Ty, 94
dt Txgx (94)
where:
2 F 1
o= 2Ty, je=1—— (95)
Jz Uo I>

To derive these formulae, we proceed as follows:

1. We find an expression for the change of horizontal action of a single
particle when emitting radiation with momentum dp.

2. We integrate around the ring to find the change in action per revolution
period.

3. We average the action over all the particles in the bunch, to find the
change in emittance per revolution period.
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Appendix C: Radiation damping of horizontal emittance

To begin, we note that, in the presence of dispersion, the action J, is
written:

2Jy = Va#2 + 20,70, + Bmpx, (96)
where:
T =z — 19, and Dz = Pz — NpaO. (97)

After emission of radiation carrying momentum dp, the variables change to:

dp _ _ dp _ dp
=6 — —, = —, ' =p, 1 ——=— x1—5— o8
Py’ T T +n P D ( Po) + Mpa ( ) (98)

We write the resulting change in the action as:

J. = J, + dJ,. (99)
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Appendix C: Radiation damping of horizontal emittance

Substituting the new values (98)) into the expression for the horizontal
action ([96)), we find that the change in the horizontal action is:

dJy w1 dp w? dp2
dJy = —— p? = — , 100
Po p+P02 = mdt T P2 (100)
where, in the limit § — O:
and:
1 1

Treating radiation as a classical phenomenon, we can take the limit dp — 0O
in the limit of small time interval, dt — O.

In this approximation:

dJ 1 dp P.

N —w— b A —wy—L, (103)
dt Py dt Pyc

where P, is the rate of energy loss of the particle through synchrotron

radiation.
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Appendix C: Radiation damping of horizontal emittance

To find the average rate of change of horizontal action, we integrate over

one revolution period:
dJ, 1 P,

dt To Pyce

We have to be careful changing the variable
of integration where the reference trajectory
IS curved:

dC d
dt = == <1+ ) > (105)
C C
So:
dJ, 1 T
= — P, (14— ds, 106
dt ToPoCQ%w1 7( +P) ’ ( )
where the rate of energy l0ss is:
C
P, = —1c3e?B?E?. (107)
21

= —— ¢ wi—-dt.

(104)

particle trajectory,
length dC

!

€I ]
\ reference "

. I}
\ trajectory,

\ length ds /
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Appendix C: Radiation damping of horizontal emittance

We have to take into account the fact that the field strength in a dipole can
vary with position. To first order in x we can write:

B
B = By+ xa— (108)
ox

Substituting Eq. (108]) into (107)), and with the use of ((101]), we find (after
some algebral) that, averaging over all particles in the beam:

7{ <w1P7 (1 + f)> ds = Uy (1 _ 9) Ex, (109)
p I>

where:
C 1 B
Uo = —LcEA D, I = f—ds, Is = 7{" ( + le) (110)
27 02
and ki1 is the normalised quadrupole gradient in the dipole field:
0B
ey = — 22V (111)
Po ox
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Appendix C: Radiation damping of horizontal emittance

Combining Eqgs. (106) and (109) we have:
dex 1 Uo I4
—_— = — 1 - E:CC‘
dt To Eo I

Defining the horizontal damping time 7.:

2 Eo 14
Ty — .__TO7 Jx — 1 B
Jz Uo I
the evolution of the horizontal emittance can be written:
de 2
— = ——¢&g.
dt T

The quantity j, is called the horizontal damping partition number.

(112)

(113)

(114)

For most synchrotron storage ring lattices, if there is no gradient in the

dipoles then j, is very close to 1.
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Appendix D: Quantum excitation of longitudinal emittance

Consider a particle with longitudinal co-ordinate z and energy deviation 9,
which emits a photon of energy u.

In terms of the amplitude 6 of the energy oscillation and the synchrotron
phase 0, the energy deviation § and longitudinal co-ordinate 2z’ after the
photon emission are:

5 = 5gsin(9')=5osm(9)—Ei. (115)
0

7 = apCchcos(G’):

s Ws

oyC

do cos(h). (116)
2

u
=g
EO

. o2 52 zaoEi sin(9) + (117)
0

Averaging over the bunch gives:

Ao? = ) h 2 — (%) = 1(52). (118
05_2—E§ where o5 = >—§<o>- (118)
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Appendix D: Quantum excitation of longitudinal emittance

Let us write the number of photons emitted per unit time with energy

between v and u + du as N(u) du. Then:

= /OOO N(w)u? du.

Including radiation damping, the energy spread evolves as:

do? 2
% — / N(u)udu ) — —of,
dt 2E2 o Tz

where the brackets ()¢ represent an average around the ring.

Using Eqg. ((129) from Appendix E for [ N(u)u?du, we find:

where the third synchrotron radiation integral I3 is defined:

= —ds,
]{Ip?’I

and the ‘“‘quantum radiation constant” is:
55 h

C, = — (=~ 3.832 x 107 3m for electrons).

32+v/3mc

(119)

(120)

(121)

(122)

(123)
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Appendix E: Quantum excitation of horizontal emittance

In deriving the equation of motion () for the action of a particle emitting
synchrotron radiation, we made the classical approximation that in a time
interval dt, the momentum dp of the radiation emitted goes to zero as dt
goes to zero.

In reality, emission of radiation is quantized, so writing “dp — Q0" actually
makes no sense.

Taking into account the quantization of radiation, the equation of motion
for the action ((100) should be written:

dJ,; _wa

dt ~ Poc

o0

w2 N (w) u? du, (124)

2.2

/OOON(u)udu—l—

where N(u) is the number of photons emitted per unit time in the energy
range from u to u 4 du.

The first term on the right hand side of Eq. (124 just gives the same
radiation damping as in the classical approximation.

The second term on the right hand side of Eq. ((124) is an excitation term
that we previously neglected.
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Appendix E: Quantum excitation of horizontal emittance

To proceed, we find expressions for the integrals fN(u)udu and
[ N(u) u? du.

The required expressions can be found from the spectral distribution of
synchrotron radiation from a dipole magnet. This is given by:
dP _ 9V3
d9  8m

where dP/dvY is the energy radiated per unit time per unit frequency range,
and ¥ = w/w, is the radiation frequency w divided by the critical frequency we:

Pﬂ?/ Ks,3(x) dz, (125)
Y

we = 4~ (126)

P, is the total energy radiated per unit time, and Ks,3(x) is a modified
Bessel function.
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Appendix E: Quantum excitation of horizontal emittance

Since the energy of a photon of frequency w is u = hw, it follows that:

. 1d
N(u) du = 1dr dv.
hw dv

Using (125)) and (127]), we find:

/ N(u)udu = P,,
0
and:

o . E
/ N(w)u? du = 20q72—0 ~
0 P

C, is a constant given by:
55 h

C,=—-—"" " ~3832x10 83 m.

1 32y/3mc

(127)

(128)

(129)

(130)
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Appendix E: Quantum excitation of horizontal emittance

The final step is to substitute for the integrals in ((124]) from ({128]) and
(129), substitute for w; and w, from (101)) and (102)), average over the

circumference of the ring, and average also over all particles in the beam.

Then, since g, = (J;), we find (for x < n, and pz; < Mpg):

de s 2 2 Is
= ——£, C ~22> 131
where the fifth synchrotron radiation integral Is is given by:
Is :7{ = s, (132)
I

The “curly-H" function H, is given by:

The damping time and horizontal damping partition number are given by:

Tz = 2—10, U:—E4I, 134
JaT. 0 10 0 =5 _ckol (134)
(Up is the energy loss per turn) and:
1
o =1— 2, (135)
I
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Appendix E: Quantum excitation of horizontal emittance

Note that the excitation term is independent of the emittance.

The quantum excitation does not simply modify the damping time, but
leads to a non-zero equilibrium emittance.

The equilibrium emittance g is determined by the condition:

dey
GCa — (136)
dt A
From ((131]), we see that the equilibrium emittance is given by:
1
0 = Cyy>—. (137)
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