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Coherence
2 waves are said to be coherent if 

they have a constant relative 
phase!

Coherent light can interfere!

Spontaneous emission typically 
generates incoherent light:
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Optical Laser
Laser: Light Amplification by Stimulated Emission of Radiation

Amplification requires
a population inversion:

→ 4 Level System

5

Energy

N+

N−



Free Electron Laser
Electron Beam in Undulator serves as Active Medium!
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FEL Amplification

Typical Dimensions

cmλ ≈U

nmλ ≈L
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electrical field ”seen” by single e−

required bunching:
1
2

σ λ<e L

> 0.1 mmσ e



Free Electron Laser
Electron Beam in Undulator serves as Active Medium!

Amplification requires
Microbunching!

and in addition:
→ correct phase slippage
→ correct relative phasing
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Recap: Undulator Radiation
Particle orbit in the undulator:

Coherence condition in forward direction:

Radiation power per e- (1st harmonic):
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Taken from Schmüser/Dohlus/Rossbach/Behrens
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Single Electron Energy Change
with the Laser Field
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Remark:
In the following, we want to neglect the longitudinal oscillation completely in 
order to achieve the aim (understanding!) preferably simply and fast. For a 
correct treatment, we then would have to modify the K parameter accordingly to 
(without proof):
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Energy Exchange
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We derived for the transverse electron orbit

and the radiation field

and with

→ Definition of the two phases ψ and χ !
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Energy Exchange
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Energy variation is depending on 2 phases ψ and χ :

The phase      is slowly varying and           on resonance:

since for the resonant kL of the light wave (coherence condition!) we have

The other phase χ is rapidly changing (by 4π over one undulator period!):
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λu

Ponderomotive Phase θ
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Phase dependency of the energy exchange:

Ponderomotive Phase:
• −π < θ < 0: average energy transfer from EM field to electron
• θ = 0: no average energy exchange
• 0 < θ < +π : average energy transfer from electron to EM field

2θ πψ= +

( )0 cdW
d 2

os oscJJK ce E
t

χ
γ

ψ= − +

Energy Loss →

Energy Gain →

Electron:



Electron Dynamics
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Key Parameters
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Findings so far:

• average electron energy loss/gain:

• on resonance (γ = γres), the ponderomotive phase is constant,           !

But:

Electron energy loss or gain will cause

• change of electron’s kinetic energy and Lorentz γ,

• change of the ponderomotive phase θ.

Key parameters are therefore:

• ponderomotive phase θ with:

• relative energy deviation η with:

• normalized field amplitude ε with:
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mathmath Phase Equation
16

Change of the ponderomotive phase (cf. page 10):
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mathmath Energy Equation
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We rewrite:
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Pendulum Equations
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math Stable Area ↔ Separatrix
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θ ′⋅ unstable

stable

η

θ

Integrating the pendulum DGL

reveals

or with θ ´← η :

Separatrix:
Trajectory ηs(θ ) limiting the stable area of bound oscillations
going through θ = ±π where ηs = 0, thus H = ε

and therewith:
• maximum η allowed for trapped motion

• curve of separatrix
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Electron Bunch ↔ Laser Field
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So far:
Interaction of a single electron with an externally generated laser field
when co-propagating through an undulator

Now:
Consider an electron bunch of length σb >> λL

Simplifying assumptions:
• laser field does not change significantly during bunch passage (E = const.)
• “ideal” electron bunch with vanishing energy spread (σγ = 0)
• simple quasi 1D treatment of the problem (σx, σy → 0)
• neglect spontaneous emission of undulator radiation

EM fieldbunch

Lu = Nu∙λu



Electron Bunch ↔ Laser Field
21

→ energy modulation
→ density modulation

no net energy transfer!

on resonance: γ = γres above resonance: γ > γres

ponderomotive phase θ

η

ponderomotive phase θ

η

→ energy modulation
→ density modulation
net energy transfer!



Gain Function
22

Since amplification = growth of laser light intensity is caused by energy transfer
from Ne electrons to the laser field, we have (with ne = Ne / V)

FEL gain function G defined as relative growth of laser light intensity:
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Madey Theorem
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Low Gain FEL
Injection with energy above resonance energy:
 Energy modulation

 Density modulation
Energy transfer

24

Intensity build-up
over many passes!

Taken from http://www.stfc.ac.uk/astec/17452.aspx



Gain Curve
Gain curve ↔ Madey Theorem:

Deviation for strong radiation fields
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Example:
IR-FEL FELIX
( U Nijmegen)



Saturation
Resonator losses are compensated by gain

26

# bunch passes



Efficiency
27

Optimum undulator length for FELO:
• sufficient gain to compensate resonator losses: G ~ Nu

3

• high efficiency of energy transfer: ∆ηsat ≈ 3/Nu

→ some ‰ of the beam energy is transferred to the radiation

Taken from A. Wolsky, CAS general course 2012

FELO



So far…
… we have neglected that the energy exchange between electrons and the 

laser field will cause a change of the EM field intensity and set
E = E0 = const. for a single passage of the undulator!

What happens if we make the undulator “longer” and consider a slowly 
varying field intensity?

Remember – injection on resonance:

28

This might be wrong for a “long” undulator!

→ energy modulation
→ density modulation

no net energy transfer!

→ be carefull…

ponderomotive phase θ

η



Slow Variation of Laser Field
Injection on resonance!

Interaction with external generated laser field

29

Amplification!



Extended Pendulum Equations
We have to extend the existing pendulum equations

• phase equations

• energy equations

by an additional equation describing the slowly varying EM field

• field equation (remember:                       )

and to consider a slowly varying amplitude and phase (→ complex E )!

Warning: What follows is a condensed version of
the somehow lengthy math (show how to get there)!
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Field Change in 1D Approx.
Slowly varying amplitude and phase (“S” means slowly varying):

Change to complex field amplitude defined by:

Wave equation links laser field and electron current in the undulator:
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Field Change in 1D Approx.
First Trick: decompose the wave operator using

Slowly varying complex field amplitude then means:

We now have to compute

Using

we first get, since     is slowly varying

and finally
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We insert the result in the wave equation

multiply with the phase factor and obtain

Second Trick: Since the field amplitude is slowly varying, we average over a 
small number n of the rapidly oscillating periods T, thus ∆t = 2nπ /ω and use

yielding
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Field Change in 1D Approx.

( )Li k s te ω− −⋅

33

( ) ( ) ( ) ( )*
2

0

12 L L x
L

i k s t i k s t jik E e E e
c t

ω ω

ε+ +
− − − ∂ ∂ ⋅ − ∂ ⋅ =   ∂

 

( ) ( )
2

2

1 2 d 2 ,
t

t

ik E t ik E
t

+∆

+ +
−∆

→ ∂ ≈ ∂
∆ ∫   ( ) ( )

2

2

21 2 d 0L
t

t

i k s tik E e t
t

ω
+∆

∗
+

−∆

− −∂ ≈
∆ ∫ 

( ) ( )
2

2
0 2

1 12 dL
t

x

t

i k s tjik E e t
c t t

ω

ε

+∆

+
−∆

− −∂
⋅ ∂ = ⋅

∆ ∂∫



Field Change in 1D Approx.
Third Trick: We integrate by parts and assume that jx is periodic in λL

The current density is generated by single electrons (at positions sj) having a 
transverse velocity from the undulator motion. Assuming that the bunch “fills” 
a transverse area          and               we obtain

and therewith

which yields with replacing the sum by the average over all
electrons in the slice ∆t:
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Field Change in 1D Approx.
We express               by its complex representation

Fourth Trick: We now use the definition of the phases ψ and χ (cf. page 9) 
and neglect again the longitudinal oscillation by replacing                :

Last step

and finally:
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Coupled 1D Equations
→ Extension of the pendulum equations to a system of 

coupled differential equations:

Assumptions:
• one-dimensional treatment
• slowly varying field amplitude and phase
• restriction to the fundamental harmonic
• no space charge effects considered (which are small)
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Numerical Solution
Redefinition of the gain: G = Gold + 1 
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Normalized Parameters
Deeper understanding of the differential equations by 

defining normalized scale parameters:

Coupled equations simplify to
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2 u
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Cubic Differential Equation
Combination yields a differential equation of 3rd order:

which has 3 solutions of the characteristic polynomial:

yielding the general solution:

with the initial values:
 normalized field amplitude

 bunching factor

 collective momentum

( ) ( )1 2 3
1 11, 1 3 , 1 3
2 2

i iµ µ µ= = − + = − −

( ) ( )
1 2 3

1 1ˆ ˆ3 3ˆ 2 2ˆ( )
i s i sisa s C e C e C e
− +−= + +

exp. increase
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3
d

ˆd
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(0) ia C= ∑
d

ˆd 0
(0) a

i isb i Cµ= − = ∑
d 2

ˆd 0
(0) b

i isP i i Cµ= = ∑

Re{µ}

Im{µ}

3

1 2



Cubic Differential Equation

Initial values are determined from following system of equations:

which yields after matrix inversion:

Considering an initial energy shift                   :

0 1

0 2

0 3

a C
b C
P C

µ

   
   = ⋅   
   
   

M

3
0

2 2
0 0ˆ ˆ ˆˆˆ( ) 1 02ji

jP s e θη µη η ηµ µ−→ + → − + − =

0 0η̂ η ρ=
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1 2 3 2
2 2 2
1 2 3 3
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µ µ µ
µ µ µ

   
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   
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i b
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 − −      = + − ⋅       − − 
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3 0
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C P
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Cubic Differential Equation

Case 1: start from already existing radiation field 
Starting conditions:
 no density modulation → b0 = 0
 no energy offset and modulation → η0 = 0  → P0 = 0
 Incoming radiation field → a0 > 0

Field amplitude:

Gain:

1 2 3 0
1
3

C C C a⇒ = = =

( ) ( )0
1 1ˆ ˆ3 3ˆ 2 2ˆ( )

3
i s i sisaa s e e e
− +− 

= + + 
 
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3 3ˆ ˆˆ ˆ3 3 2 21 3 ˆ3 2cos
9 2

s ss se e s e e
−−

    = + + + ⋅ +   
      
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Cubic differential Equation
Case 1: start from existing radiation field

Universal gain curve:

Asymptotical behavior for large   :

Definition of the 1 dim gain length (power gain length):

Behavior for small         (Taylor expansion) ↔ ”Lethargy“

ˆ31
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sG e≈
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2
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9 2 2
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G s e e s s
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1080 3.2G G

s
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Universal Gain Curve

lethargy
exponential increase

2

2
0

1 3ˆ( ) 3 2cosh 4cos cosh
9 2 2

a
G s
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χχ χ
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L
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1
9

Gs Le
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Saturation

Region of exponential increase:

→ field amplitude cannot grow
larger than

and thus

2
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2 0
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2 2

2 1
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21
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Saturation

Maximum achievable amplitude
does not depend on the amplitude
of the incoming field!

s/LG
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Saturation

Maximum achievable gain factor depends on the amplitude of 
the incoming field

s/LG

46



Gain and Bandwidth
47

Madey theorem



Cubic Differential Equation

Case 2: Start from an existing density modulation
Starting conditions:
 Density modulation →                        at λm ≈ λr

 Energy offset → coll. e. modulation! → ηi = 0,  →
 incoming radiation field → a0 = 0

Field energy:

Gain:

( ) ( )5 6 1 60 0 0
1 2 3, 1 , 1

3 3 3
b b bC i C C⇒ = − = − = −

2 2
0

2 ( ),
9 g

sa b G
L

χ χ= =

3 1 3 1ˆ( ) cosh 3sin sinh cos cosh
2 2 2 2

G s χ χ χ χ χ
      = + −      

      

0
0

jib e θ−=

0 0 00
ˆ´P ib bη= =

for η0 = 0
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Universal Gain Curve
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s
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χ =3 1 3 1ˆ( ) cosh 3sin sinh cos cosh
2 2 2 2
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Gain and Bandwidth
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Bandwidth
51

Finding:
FEL Gain drops significantly, 
when the relative energy 
variation η exceeds the Pierce 
parameter ρ !

s-dependent energy bandwidth

normalized gain @ s = 20 Lg:

( ) 3 gL
s

s
η π ρ∆ =

→ ρ determines spectral width of the generated readiation!

Gain curve has a FWHM ≈ ρ



SASE
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Self Amplified Spontaneous Emission (SASE)
Was proposed in the beginning of the 1980s to produce high power short 
wavelength FEL radiation. 2 ways of considering the start of the FEL process:
• spontaneous emission at the beginning of the undulator is amplified,
• random longitudinal distribution of electrons leads to bunching non-

vanishing factor at resonant frequency starting the FEL process.

Both pictures are fully equivalent!
Time structure:
Not the full bunch is contributing to the SASE start-up! Number of contributing 
electrons are determined by the undulator amplification bandwidth σω ≈ ρω!

Coherence or cooperation length LC
can be roughly determined from time-bandwidth product τ ∙σω:

Within the bunch, several areas can start a SASE process individually! 

c
ω

πτ
σ

= 300
2

L
C c LL c λτ λ

π ρ
→ = = ≈

π
ρω

≈
2

L

c
λ
π ρ

=



High Gain SASE FEL
53

Linac Coherent Light Source LCLS: the blue pint of all SASE FELs

FLASH and European XFEL: long pulse trains from s.c. Linacs

• transv. emittance
• energy spread
• energy, current

, 4x y Lε λ π≤

γσ γ ρ<
GeV, kAbeam peakE I≈ ≈



High Gain SASE FEL

Low temporal 
coherence!

54



Peak Brilliance
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Outlook: Seeding
56

e.g. FERMI
@ ELETTRA

λL ≈ 4 nm

e.g. LCLS
Eur. XFEL

e.g. XFELO
planned @
Eur. XFEL

FLASH:
λL = 38 nm

e.g. Eur. XFEL
λL < 1 Å

Osc-HGHG
HGHG seeding with an oscillator
starting from shot noise

e.g. FERMI
@ ELETTRA

λL ≈ 4 nm

planned @
FLASH
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Literature
Recommended Textbooks:
• J.A. Clark, The Science and Technology of Undulators and Wigglers, Oxford 

Science Publications, ISBN 019850855: Synchrotron Radiation, Undulators
and Wigglers, includes technical aspects and many details

• P. Schmüser, M. Dohlus, J. Rossbach, C. Behrens, Free-Electron Lasers in the 
Ultraviolet and X-Ray Regime, Second Edition (2014), Springer, ISBN 
9783319040806: The Hamburg Blue-Book on Free Electron Lasers

• K.-J. Kim, Z. Huang, R. Lindberg, Synchrotron Radiation and Free-Electron 
Lasers, Cambridge University Press (2017), ISB 9781107162617: Excellent 
Book going deep into the theory of FEL way beyond the scope of this lecture

• K. Wille, The Physics of Particle Accelerators. An Introduction. Oxford 
University Press, Oxford (2001): A compact book with some insights in LG 
FELs

• …
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