Free Electron Lasers

 (FEL)
Wolfgang Hillert

Advanced Accelerator Physics
6 - 18 November 2022
Sevrier, France

Copyright statement and speaker's release for video publishing

The author consents to the photographic, audio and video recording of this lecture at the CERN Accelerator School. The term "lecture" includes any material incorporated therein including but not limited to text, images and references.

The author hereby grants CERN a royalty-free license to use his image and name as well as the recordings mentioned above, in order to post them on the CAS website.

The author hereby confirms that to his best knowledge the content of the lecture does not infringe the copyright, intellectual property or privacy rights of any third party. The author has cited and credited any third-party contribution in accordance with applicable professional standards and legislation in matters of attribution. Nevertheless the material represent entirely standard teaching material known for more than ten years. Naturally some figures will look alike those produced by other teachers.

Table of Contents

- 1. Optical Laser vs. FEL
\cong 2. Recap: Undulator Radiation

3. Pendulum Equations
4. "Constant" laser field: LG FEL

1D interaction with the laser field
6. 1D coupled differential equations

7. Normalized scale parameters
8. HG FEL key parameters
\perp 9. SASE and Seeding

Coherence

2 waves are said to be coherent if they have a constant relative phase!

Coherent light can interfere!
Spontaneous emission typically generates incoherent light:
atoms / molecules
(®) MWMW

$\underline{\text { many }} \mathrm{e}^{-}$in an undulator

Optical Laser

Laser: Light Amplification by Stimulated Emission of Radiation

Amplification requires a population inversion:
$\rightarrow 4$ Level System

Free Electron Laser

Electron Beam in Undulator serves as Active Medium!

Population Inversion??

FEL Amplification

Free Electron Laser

Electron Beam in Undulator serves as Active Medium!

Recap: Jincuiator Radiation

Particle orbit in the undulator:

$$
\begin{aligned}
& x(t)=\frac{K}{\gamma k_{u}} \cdot \sin \left(\omega_{u} t\right) \\
& s(t)=\bar{\beta} c t-\frac{K^{2}}{8 \gamma^{2} k_{u}} \cdot \sin \left(2 \omega_{u} t\right) \\
& \bar{\beta}=1-\frac{1}{2 \gamma^{2}}\left\{1+\frac{K^{2}}{2}\right\}
\end{aligned}
$$

Coherence condition in forward direction:

$$
\lambda_{L}=\frac{1}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right) \cdot \lambda_{u}=(1-\bar{\beta}) \cdot \lambda_{u}
$$

Radiation power per e^{-}($1^{\text {st }}$ harmonic):

$$
P=\frac{e^{2} c \gamma^{2} K^{2} k_{u}^{2}}{12 \pi \varepsilon_{0}\left(1+K^{2} / 2\right)^{2}}
$$

Single Electron Energy Change with the Laser Field

Remark:
In the following, we want to neglect the longitudinal oscillation completely in order to achieve the aim (understanding!) preferably simply and fast. For a correct treatment, we then would have to modify the K parameter accordingly to (without proof):

$$
K \rightarrow K_{J J}=K\left\{J_{0}\left(\frac{K^{2}}{4+2 K}\right)-J_{1}\left(\frac{K^{2}}{4+2 K}\right)\right\}
$$

Energy change of a single electron in the an externally generated laser field

$$
\frac{\mathrm{dW}}{\mathrm{~d} t}=\vec{F} \cdot \vec{v}=-e E_{x}(t) v_{x}(t)
$$

®dd. ©n®rgy gali/loss due to Interaction with EM fleld

Energy Exchange

We derived for the transverse electron orbit

$$
v_{x}=\dot{x}=c \cdot \frac{K}{\gamma} \cos \left(k_{u} s\right), \quad k_{u}=\frac{2 \pi}{\lambda_{u}}
$$

and the radiation field

$$
E_{x}(t)=E_{0} \cos \left(\omega_{L} t-k_{L} s+\grave{\phi}_{L}\right), \quad k_{L} c=\omega_{L}
$$

and with $\cos \alpha \cdot \cos \beta=\frac{1}{2}\{\cos (\alpha-\beta)+\cos (\alpha+\beta)\}$

$$
\begin{aligned}
\frac{\mathrm{dW}}{\mathrm{~d} t} & =-e E_{x}(t) \dot{x}=-e \frac{K_{J J} c}{\gamma} \cos \left(k_{u} s\right) E_{0} \cos \left(k_{L} s-\omega t+\phi_{L}\right) \\
& =-e \frac{K_{J J} c}{2 \gamma} E_{0}\{\underbrace{\cos \left(\left(k_{L}+k_{u}\right) s-\omega t+\phi_{L}\right)}_{=\psi}+\cos \underbrace{\left(\left(k_{L}-k_{u}\right) s-\omega t+\phi_{L}\right)}_{=\chi}\}
\end{aligned}
$$

\rightarrow Definition of the two phases ψ and $\chi!$

Energy Exchange

Energy variation is depending on 2 phases ψ and χ :

$$
\frac{\mathrm{dW}}{\mathrm{~d} t}=-e \frac{K_{J J} c}{2 \gamma} E_{0}(\cos \psi+\cos \chi)
$$

The phase ψ is slowly varying and $\dot{\psi}=0$ on resonance:

$$
\omega=k_{L} c
$$

$$
\begin{aligned}
\dot{\psi} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left(k_{L}+k_{u}\right) s-\omega t+\phi_{L}\right\}=\left(k_{L}+k_{u}\right) \bar{\beta} c-\omega \stackrel{\downarrow}{=}\left(k_{L}+k_{u}\right) \bar{\beta} c-k_{L} c \\
& =\left[k_{u} \bar{\beta}-(1-\bar{\beta}) k_{L}\right] c
\end{aligned}
$$

since for the resonant k_{L} of the light wave (coherence condition!) we have

$$
k_{u}=(1-\bar{\beta}) \cdot k_{L} \quad \rightarrow \quad \dot{\psi}=k_{u} c \underbrace{(\bar{\beta}-1)}_{\approx 0} \approx 0
$$

The other phase χ is rapidly changing (by 4π over one undulator period!):

$$
\dot{\chi}=\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left(k_{L}-k_{u}\right) s-\omega t+\phi_{L}\right\}=\left[-k_{u} \bar{\beta}-(1-\bar{\beta}) k_{L}\right] c=-2 k_{u} c
$$

Ponderomotive Phase $\boldsymbol{\theta}$

Phase dependency of the energy exchange: $\frac{\mathrm{dW}}{\mathrm{d} t}=-e \frac{K_{J J} c}{2 \gamma} E_{0}(\cos \psi+\cos \chi)$

Ponderomotive Phase: $\quad \theta=\psi+\pi / 2$

- $-\pi<\theta<0$: average energy transfer from EM field to electron
- $\quad \theta=0$: no average energy exchange
- $0<\theta<+\pi$: average energy transfer from electron to EM field

Electron Dynamics

e^{-}energy gain e^{-}energy loss

S

energy exchamge deppendls om the pomderomotive plhase θ

Key Parameters

Findings so far:

- average electron energy loss/gain: $\left\langle\frac{\mathrm{dW}}{\mathrm{d} t}\right\rangle=-e \frac{K_{J J} c}{2 \gamma} E_{0} \sin \theta$
- on resonance $\left(\gamma=\gamma_{\text {res }}\right)$, the ponderomotive phase is constant, $\dot{\theta}=0$!

But:
Electron energy loss or gain will cause

- change of electron's kinetic energy and Lorentz γ,
- change of the ponderomotive phase θ.

Key parameters are therefore:

- ponderomotive phase $\boldsymbol{\theta}$ with:
- relative energy deviation η with:
- normalized field amplitude ε with:

$$
\begin{aligned}
& \theta=\left(k_{L}+k_{u}\right) s-\omega t+\phi_{L}+\pi / 2 \\
& \eta=\frac{\gamma-\gamma_{\text {res }}}{\gamma_{\text {res }}} \\
& \varepsilon=\frac{e E_{0} K_{J J}}{2 m_{0} c^{2} \gamma_{\text {res }}^{2}}
\end{aligned}
$$

Phase Equation

ct 10

Change of the ponderomotive phase (cf. page 10):

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left(k_{L}+k_{u}\right) s-\omega t+\phi_{L}+\pi / 2\right\}=\ldots=c\left[k_{u} \bar{\beta}-(1-\bar{\beta}) k_{L}\right]
$$

Now:
gives:
and with:

$$
\begin{gathered}
\bar{\beta}=1-\frac{1}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)=1-\frac{X}{\gamma^{2}} \quad \text { with } \quad X=\frac{1}{2}\left(1+\frac{K^{2}}{2}\right) \quad \approx 1 \\
k_{u}=k_{L} \cdot \frac{1}{2 \gamma_{\text {res }}^{2}}\left(1+\frac{K^{2}}{2}\right)=k_{L} \frac{X}{\gamma_{\text {res }}^{2}}
\end{gathered}
$$

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=c[k_{u}(\underbrace{\left(1-\frac{X}{\gamma^{2}}\right.}_{\bar{\beta}}) \underbrace{\frac{X}{\gamma^{2}}}_{1-\bar{\beta}} \underbrace{\frac{\gamma_{r e s}^{2}}{X}}_{k_{L}} k_{u}]=c k_{u}[(1-\underbrace{\frac{X}{\gamma^{2}}}_{\approx 0})-\frac{\gamma_{r e s}^{2}}{\gamma^{2}}] \approx c k_{u}\left(1-\frac{\gamma_{r e s}^{2}}{\gamma^{2}}\right)
$$

$$
\frac{\gamma_{r e s}^{2}}{\gamma^{2}}=\frac{1}{(\eta+1)^{2}} \approx 1-2 \eta \quad \text { for } \quad \eta \ll 1
$$

Finally:

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=2 c k_{u} \eta \quad \rightarrow \quad \frac{\mathrm{~d} \theta}{\mathrm{~d} s}=2 k_{u} \eta
$$

Energy Equation

We rewrite:

$$
\frac{\mathrm{d} \eta}{\mathrm{~d} t}=\frac{1}{\gamma_{r e s}} \frac{\mathrm{~d} \gamma}{\mathrm{~d} t}=\frac{1}{\gamma_{r e s}} \frac{1}{m_{0} c^{2}}\left\langle\frac{\mathrm{dW}}{\mathrm{~d} t}\right\rangle
$$

and with

$$
\left\langle\frac{\mathrm{dW}}{\mathrm{~d} t}\right\rangle=-e \frac{K_{J J} c}{2 \gamma} E_{0} \sin \theta
$$

one obtains:

$$
\frac{\mathrm{d} \eta}{\mathrm{~d} t}=-e \frac{K_{J J} c}{2 m_{0} c^{2} \gamma_{\text {res }}^{2}} E_{0} \sin \theta=-\varepsilon \cdot c \cdot \sin \theta
$$

Finally: $\quad \frac{\mathrm{d} \eta}{\mathrm{d} t}=-\varepsilon c \sin \theta \quad \rightarrow \quad \frac{\mathrm{~d} \eta}{\mathrm{~d} s}=-\varepsilon \sin \theta$
energy transfer from electron to light wave
$\theta=\frac{\pi}{2}$
energy transfer from light wave to electron

Pendulum Equations

Phase equation: $\quad \frac{\mathrm{d} \theta}{\mathrm{d} s}=2 k_{u} \eta$
Energy equation: $\frac{\mathrm{d} \eta}{\mathrm{d} s}=-\varepsilon \sin \theta$
combined: $\quad \frac{\mathrm{d}^{2} \theta}{\mathrm{~d}^{2}}+2 k_{u} \varepsilon \sin \theta=0$

Stable Area \leftrightarrow Separatrix

Integrating the pendulum DGL
reveals

$$
\theta^{\prime \prime}(s)+2 k_{u} \varepsilon \sin \theta(s)=0 \quad \mid \cdot \theta^{\prime}
$$

$$
\frac{1}{2} \theta^{\prime 2}-2 k_{u} \varepsilon \cos \theta=\text { const. }
$$

or with $\theta^{\prime} \leftarrow \eta$:

$$
k_{u} \eta^{2}-\varepsilon \cos \theta=H
$$

Separatrix:

Trajectory $\eta_{s}(\theta)$ limiting the stable area of bound oscillations going through $\theta= \pm \pi$ where $\eta_{s}=0$, thus $H=\varepsilon \quad \rightarrow \quad k_{u} \eta_{s}^{2}-\varepsilon \cos \theta=\varepsilon$ and therewith:

- maximum η allowed for trapped motion

$$
\eta_{s, \text { max }}=\sqrt{\frac{2 \varepsilon}{k_{u}}}
$$

$\longleftarrow |$| depends on |
| :--- |
| intensity of |
| laser field! |

- curve of separatrix $\quad \eta_{s}(\theta)=\eta_{s, \text { max }}\left\{ \pm \sqrt{\frac{1}{2}(1+\cos \theta)}\right\}$

Electron Bunch \leftrightarrow Laser Field

So far:
Interaction of a single electron with an externally generated laser field when co-propagating through an undulator

Now:
Consider an electron bunch of length $\sigma_{b} \gg \lambda_{L}$

Simplifying assumptions:

- laser field does not change significantly during bunch passage ($E=$ const.)
- "ideal" electron bunch with vanishing energy spread ($\sigma_{\gamma}=0$)
- simple quasi 1D treatment of the problem $\left(\sigma_{x}, \sigma_{y} \rightarrow 0\right)$
- neglect spontaneous emission of undulator radiation

Electron Bunch \leftrightarrow Laser Field

Gain Function

FEL gain function G defined as relative growth of laser light intensity:

$$
G=\frac{\Delta I_{L}}{I_{L}} \quad \text { with } \quad I_{L}=\varepsilon_{0} E^{2} \cdot V
$$

Since amplification = growth of laser light intensity is caused by energy transfer from N_{e} electrons to the laser field, we have (with $n_{e}=N_{e} / V$)

$$
G=-\frac{m_{0} c^{2} N_{e}\langle\Delta \gamma\rangle}{I_{L}}=-\frac{\gamma_{r e s} m_{0} c^{2} n_{e}\left\langle\eta\left(s=L_{u}\right)\right\rangle}{\varepsilon_{0} E_{0}^{2}}
$$

A somehow lengthy Taylor expansion up to second order for small ε ($\varepsilon \ll k_{u}^{-1} L_{u}^{-2}$) gives

$$
G=\frac{\pi e^{2} L_{u}^{3} E_{0}^{2} K_{J J}^{2} n_{e}}{4 \gamma_{\text {res }}^{3} m_{0} c^{2} \varepsilon_{0} \lambda_{u}} \frac{\mathrm{~d}}{\mathrm{~d} \xi_{0}}\left(\frac{\sin \xi_{0}}{\xi_{0}}\right)^{2}
$$

where

$$
\xi_{0}=k_{u} L_{u} \eta_{0} \quad \text { at the undulator entrance }(s=0)
$$

Miadey Hheorem

Low Gain FEL

Injection with energy above resonance energy:

$>$ Energy modulation
$>$ Density modulation
$>$ Energy transfer

Gain Curve

Gain curve \leftrightarrow Madey Theorem:

Deviation for strong radiation fields

Example:
IR-FEL FELIX
(U Nijmegen)

λ_{L}	$20 \mu m$	$\mathrm{~L}_{u}$	2.47 m
λ_{u}	65 mm	$\mathrm{~N}_{u}$	38
K	0.5	γ_{r}	42.76
$\mathrm{~K}_{\mathrm{JJ}}$	0.4857	η_{opt}	$5.4 \cdot 10^{-3}$
$\sigma_{x, y}$	$2 m m$	$\mathrm{~W}_{b}$	$22 M e V$
σ_{z}	$0.9 m m$	I_{b}	57.3 A
Q_{b}	$172 p C$	dummy	0

- SSG curve
- $E_{0}=1 \mathrm{MV} / \mathrm{m}$
- $E_{0}=20 \mathrm{MV} / \mathrm{m}$

Saturation

Resonator losses are compensated by gain

Efficiency

mirror
FELO

... we have neglected that the energy exchange between electrons and the laser field will cause a change of the EM field intensity and set $E=E_{0}=$ const. for a single passage of the undulator!

This might be wrong for a "long" undulator!

What happens if we make the undulator "longer" and consider a slowly varying field intensity?

Remember - injection on resonance:

\rightarrow energy modulation
\rightarrow density modulation no net energy transfer!

『®ally?
\rightarrow be carefull...

Slow Variation of Laser Field

Injection on resonance!

Interaction with external generated laser field

Extended Pendulum Equations

We have to extend the existing pendulum equations

- phase equations
- energy equations

$$
\left.\begin{array}{l}
\frac{\mathrm{d} \theta_{j}(s)}{\mathrm{d} s}=2 k_{u} \eta_{j}(s) \\
\frac{\mathrm{d} \eta_{j}(s)}{\mathrm{d} s}=-\varepsilon \sin \theta_{j}(s)
\end{array}\right\} \quad 2 N_{e} \text { equations! }
$$

by an additional equation describing the slowly varying EM field

- field equation $\quad \frac{\mathrm{d} E}{\mathrm{~d} s}=$??? (remember: $\varepsilon=\frac{e E_{0} K_{J J}}{2 m_{0} c^{2} \gamma_{\text {res }}^{2}}$)
and to consider a slowly varying amplitude and phase (\rightarrow complex E)!

Warning: What follows is a condensed version of the somehow lengthy math (show how to get there)!

Field Change in 1D Approx.

Slowly varying amplitude and phase ("S" means slowly varying):

$$
E_{x}(s, t)=\hat{E}_{S}(s, t) \cdot \cos \left(k_{L} s-\omega t+\phi_{S}(s, t)\right)
$$

Change to complex field amplitude defined by:

$$
\begin{gathered}
\tilde{E}(s, t)=\frac{1}{2} \hat{E}_{S}(s, t) \cdot e^{i \phi_{s}(s, t)} \\
\rightarrow \quad E_{x}(s, t)=\tilde{E}(s, t) \cdot e^{i\left(k_{L} s-\omega t\right)}+\tilde{E}^{*}(s, t) \cdot e^{-i\left(k_{L} s-\omega t\right)}=2 \operatorname{Re}\left\{\tilde{E}(s, t) \cdot e^{i\left(k_{L} s-\omega t\right.}\right\}
\end{gathered}
$$

Wave equation links laser field and electron current in the undulator:

$$
\left\{\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\vec{\nabla}^{2}\right\} \vec{E}=-\mu_{0} \frac{\partial \vec{j}}{\partial t}
$$

1-dim

$$
\frac{1}{c^{2}} \frac{\partial^{2} E_{x}}{\partial t^{2}}-\frac{\partial^{2} E_{x}}{\partial s^{2}}=-\frac{1}{\varepsilon_{0} c^{2}} \frac{\partial j_{x}}{\partial t}
$$

Field Change in 1D Approx.

First Trick: decompose the wave operator using

$$
\partial_{ \pm}=\frac{1}{c} \frac{\partial}{\partial t} \pm \frac{\partial}{\partial x} \quad \rightarrow \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial s^{2}}=\partial_{+} \cdot \partial_{-}
$$

Slowly varying complex field amplitude then means:

$$
\left|\partial_{ \pm} \tilde{E}\right| \cdot \lambda_{L} \ll|\tilde{E}| \quad \text { or } \quad\left|\partial_{ \pm} \tilde{E}\right| \ll|\tilde{E}| \cdot k_{L}
$$

We now have to compute

Using

$$
\partial_{+} \cdot \partial_{-} E_{x}(s, t)=\partial_{+} \cdot \partial_{-}\left(\underset{\uparrow}{\tilde{E}} \cdot e^{i\left(k_{L} s-\omega t\right)}+\tilde{E}^{*} \cdot e^{-i\left(k_{L} s-\omega t\right)}\right) \approx 0 \leftrightarrow\left|\partial_{-} \tilde{E}\right| \ll k_{L}|\tilde{E}|
$$

$$
\partial_{+} e^{i\left(k_{L} s-\omega t\right)}=-i\left(\frac{\omega}{c}-k_{L}\right) e^{i\left(k_{L_{L}} s-\omega t\right)}=0 \quad \partial_{-} e^{i\left(k_{L^{s}}-\omega t\right)}=-i\left(\frac{\omega}{c}+k_{L}\right) e^{i\left(k_{L_{L}} s-\omega t\right)}=-2 i k_{L} e^{i\left(k_{L} s-\omega t\right)}
$$

we first get, since \tilde{E} is slowly varying

$$
\partial_{+} \cdot \partial_{-} E_{x}(s, t)=-\partial_{+}\left[\left(2 i k_{L} \tilde{E}\right) \cdot e^{i\left(k_{L} s-\omega t\right)}-\left(2 i k_{L} \tilde{E}^{*}\right) \cdot e^{-i\left(k_{L} s-\omega t\right)}\right]
$$

and finally

$$
\partial_{+} \cdot \partial_{-} E_{x}(s, t)=-2 i k_{L}\left[\left(\partial_{+} \tilde{E}\right) \cdot e^{i\left(k_{L} s-\omega t\right)}-\left(\partial_{+} \tilde{E}^{*}\right) \cdot e^{-i\left(k_{L} s-\omega t\right)}\right]
$$

Field Change in 1D Approx.

We insert the result in the wave equation

$$
\left.2 i k_{L}\left[\left(\partial_{+} \tilde{E}\right) \cdot e^{i\left(k_{L} s-\omega t\right)}-\left(\partial_{+} \tilde{E}^{*}\right) \cdot e^{-i\left(k_{L} s-\omega t\right)}\right]=\frac{1}{\varepsilon_{0} c^{2}} \frac{\partial j_{x}}{\partial t} \quad \right\rvert\, \cdot e^{-i\left(k_{L} s-\omega t\right)}
$$

multiply with the phase factor and obtain

$$
2 i k \cdot\left(\partial_{+} \tilde{E}\right)-2 i k \cdot\left(\partial_{+} \tilde{E}^{*}\right) \cdot e^{-2 i\left(k_{L} s-\omega t\right)}=\frac{1}{\varepsilon_{0} c^{2}} \frac{\partial j_{x}}{\partial t} \cdot e^{-i\left(k_{L} s-\omega t\right)}
$$

Second Trick: Since the field amplitude is slowly varying, we average over a small number n of the rapidly oscillating periods T, thus $\Delta t=2 n \pi / \omega$ and use

$$
\rightarrow \frac{1}{\Delta t} \int_{-\Delta t / 2}^{+\Delta t / 2} 2 i k\left(\partial_{+} \tilde{E}\right) \mathrm{d} t \approx 2 i k\left(\partial_{+} \tilde{E}\right), \quad \frac{1}{\Delta t} \int_{-\Delta t / 2}^{+\Delta t / 2} 2 i k\left(\partial_{+} \tilde{E}^{*}\right) e^{-2 i\left(k_{L} s-\omega t\right)} \mathrm{d} t \approx 0
$$

yielding

$$
2 i k \cdot\left(\partial_{+} \tilde{E}\right)=\frac{1}{\varepsilon_{0} c^{2}} \frac{1}{\Delta t} \int_{-\Delta t / 2}^{+\Delta t / 2} \frac{\partial j_{x}}{\partial t} \cdot e^{-i\left(k_{L} s-\omega t\right)} \mathrm{d} t
$$

Field Change in 1D Approx.

Third Trick: We integrate by parts and assume that j_{x} is periodic in λ_{L}

$$
2 i k \cdot\left(\partial_{+} \tilde{E}\right)=\frac{1}{\varepsilon_{0} c^{2}} \frac{1}{\Delta t} \int_{-\Delta t / 2}^{+\Delta t / 2} \underbrace{\frac{\partial j_{x}}{\partial t}}_{u^{\prime}} \cdot \underbrace{e^{-i\left(k_{L} s-\omega t\right)}}_{v} \mathrm{~d} t=\frac{i \omega}{\varepsilon_{0} c^{2}} \frac{1}{\Delta t} \int_{-\Delta t / 2}^{+\Delta t / 2} j_{u}^{j_{-}} \cdot \underbrace{e^{-i\left(k_{L^{s}} s-\omega t\right)}}_{v / i \omega} \mathrm{~d} t
$$

The current density is generated by single electrons (at positions s_{j}) having a transverse velocity from the undulator motion. Assuming that the bunch "fills" a transverse area $\pi \sigma_{x}^{2}$ and $\gamma_{j} \approx \gamma_{\text {res }}$ we obtain
and therewith

$$
j_{x}=\frac{-e}{\pi \sigma_{x}^{2}} \underbrace{\frac{c K}{\gamma_{r e s}} \cos \left(k_{u} s\right)}_{=\dot{x}} \sum_{j=1}^{N_{e}} \delta\left(s-s_{j}(t)\right)
$$

$$
2 i k \cdot\left(\partial_{+} \tilde{E}\right)=\frac{i \omega}{\varepsilon_{0} c^{2}} \frac{-e}{\pi \sigma_{x}^{2}} \frac{c K}{\gamma_{r e s}} \frac{1}{c \Delta t} \sum_{j=1}^{N_{\Lambda}} \cos \left(k_{u} s\right) e^{-i\left(k_{L} s-\omega t_{j}\right)}
$$

which yields with replacing the sum by the average over all $N_{\Delta}=n_{e}\left(\pi \sigma_{x}^{2}\right)(c \Delta t)$ electrons in the slice Δt :

$$
\partial_{+} \tilde{E}=-\frac{e K n_{e}}{2 \varepsilon_{0} \gamma_{\text {res }}}\left\langle\cos \left(k_{u} s\right) e^{-i\left(k_{L} s-\omega t_{j}\right)}\right\rangle
$$

Field Change in 1D Approx.

We express $\cos \left(k_{u} s\right)$ by its complex representation

$$
\partial_{+} \tilde{E}=-\frac{e K n_{e}}{2 \varepsilon_{0} \gamma_{\text {res }}}\left\langle\frac{e^{i k_{u} s}+e^{-i k_{u} s}}{2} e^{-i\left(k_{L} s-\omega t_{j}\right)}\right\rangle=-\frac{e K n_{e}}{4 \varepsilon_{0} \gamma_{\text {res }}}\left\langle e^{i\left(k_{u} s-k_{L} s+\omega t_{j}\right)}+e^{-i\left(k_{u} s+k_{L} s-\omega t_{j}\right)}\right\rangle
$$

Fourth Trick: We now use the definition of the phases ψ and χ (cf. page 9) and neglect again the longitudinal oscillation by replacing $K \rightarrow K_{J J}$:

$$
\partial_{+} \tilde{E}=-\frac{e K_{J J} n_{e}}{4 \varepsilon_{0} \gamma_{\text {res }}}\left\langle e^{-i \chi_{j}}+e^{-i \psi_{j}}\right\rangle \approx-\frac{e K_{J J} n_{e}}{4 \varepsilon_{0} \gamma_{\text {res }}}\left\langle e^{-i \psi_{j}}\right\rangle=-\frac{e K_{J J} n_{e}}{4 \varepsilon_{0} \gamma_{\text {res }}}\left\langle e^{-i \theta_{j}}\right\rangle
$$

Last step

$$
\partial_{+} \tilde{E}=\frac{\partial \tilde{E}(s, t)}{\partial s}+\frac{1}{c} \frac{\partial \tilde{E}(s, t)}{\partial t}=\frac{\partial \tilde{E}(s, \theta)}{\partial s}+\underbrace{2 k_{u} \frac{\partial \tilde{E}(s, \theta)}{\partial \theta}}_{\approx 0 \text { (for fundamental) }} \approx \frac{\mathrm{d} \tilde{E}(s, \theta)^{c}}{\mathrm{~d} s}
$$

and finally:

$$
\frac{\mathrm{d} \tilde{E}}{\mathrm{~d} s}=-\frac{e K_{J J} n_{e}}{4 \varepsilon_{0} \gamma_{r e s}}\left\langle e^{-i \theta_{j}}\right\rangle
$$

WWew!

Coupled 1D Equations

\rightarrow Extension of the pendulum equations to a system of coupled differential equations:

$$
\begin{array}{|lll|}
\hline \frac{\mathrm{d} \tilde{E}}{\mathrm{~d} s}=-\kappa_{2} n_{e}\left\langle e^{-i \theta_{j}}\right\rangle & \text { with bunching factor } & b=\left\langle e^{-i \theta_{j}}\right\rangle \\
\frac{\mathrm{d} \theta_{j}}{\mathrm{~d} s}=2 k_{u} \eta_{j} & \text { with ponderomotive phases } & \theta_{j} \\
\frac{\mathrm{~d} \eta_{j}}{\mathrm{~d} s}=\kappa_{1}\left(\tilde{E} \cdot e^{i \theta_{j}}+\tilde{E}^{*} \cdot e^{-i \theta_{j}}\right) & \text { with rel. energy deviations } & \eta_{j}
\end{array}
$$

Assumptions:

- one-dimensional treatment
- slowly varying field amplitude and phase
- restriction to the fundamental harmonic
- no space charge effects considered (which are small)

$$
\begin{aligned}
& \text { Abbreviations: } \\
& \kappa_{1}=\frac{e K_{J J}}{2 \gamma_{\text {res }}^{2} m_{0} c^{2}} \\
& \kappa_{2}=\frac{e K_{J J}}{4 \varepsilon_{0} \gamma_{\text {res }}}
\end{aligned}
$$

Numerical Solution

Redefinition of the gain: $G=G_{\text {old }}+1$

Normalized Parameters

Deeper understanding of the differential equations by defining normalized scale parameters:

longitudinal coordinate:	$\hat{s}=2 k_{u} \rho s$	$\frac{\mathrm{~d} \theta_{j}}{\mathrm{~d} \hat{s}}=\hat{\eta}_{j}$
rel. energy deviation:	$\hat{\eta}=\frac{\eta}{\rho}$	$\frac{\mathrm{d} \hat{\eta}_{j}}{\mathrm{~d} \hat{s}}=a e^{i \theta_{j}}+a^{*} e^{-i \theta_{j}}$
norm. field amplitude:	$a=\frac{\kappa_{1}}{2 k_{u} \rho^{2}} \tilde{E}$	$\frac{\mathrm{~d} a}{\mathrm{~d} \hat{s}}=-\frac{\kappa_{1} \kappa_{2} n_{e}}{4 k_{u}^{2} \rho^{3}}\left\langle e^{-i \theta_{j}}\right\rangle=-\left\langle e^{-i \theta_{j}}\right\rangle$
Pierce parameter:	$\rho=\sqrt[3]{\frac{\kappa_{1} \kappa_{2} n_{e}}{4 k_{u}^{2}}}=\sqrt[3]{\frac{1}{8 \pi}\left(\frac{I_{\text {beam }}}{I_{\text {Alfvén }}}\right)\left(\frac{K_{J J}}{1+K^{2} / 2}\right)^{2}\left(\frac{\gamma \lambda^{2}}{2 \pi \sigma_{x}^{2}}\right)}$	

Coupled equations simplify to

$$
\begin{array}{ll}
\frac{\mathrm{d} a}{\mathrm{~d} \hat{s}}=-\left\langle e^{-i \theta_{j}}\right\rangle=-b, & \frac{\mathrm{~d} b}{\mathrm{~d} \hat{s}}=-i\left\langle\hat{\eta}_{j} \cdot e^{-i \theta_{j}}\right\rangle=-i P, \\
\text { norm. field amplitude } \quad \frac{\mathrm{d} P}{\mathrm{~d} \hat{s}}=a+a^{*}\left\langle e^{-2 \theta_{j}}\right\rangle-i\left\langle\hat{\eta}_{j}^{2} \cdot \theta_{j}\right\rangle \\
\text { bunching factor } & \text { collective momentum }
\end{array}
$$

Cubic Differential Equation

Combination yields a differential equation of $3^{\text {rd }}$ order:

$$
\frac{\mathrm{d}^{3} a}{\mathrm{~d} \hat{s}^{3}}=i a \quad \text { with Ansatz } \quad a=C \cdot e^{-i \mu \hat{s}} \quad \rightarrow \quad \mu^{3}=1
$$

which has 3 solutions of the characteristic polynomial:

$$
\mu_{1}=1, \quad \mu_{2}=-\frac{1}{2}(1+i \sqrt{3}), \quad \mu_{3}=-\frac{1}{2}(1-i \sqrt{3})
$$

yielding the general solution:
with the initial values:

$$
a(\hat{s})=C_{1} e^{-i \hat{s}}+C_{2} e^{\frac{1}{2}(i-\sqrt{3}) \hat{s}}+C_{3} e^{\left.\frac{1}{2}(i+\sqrt{3})\right)}
$$

exp. increase
$>$ normalized field amplitude

$$
\begin{aligned}
& a(0)=\sum C_{i} \\
& b(0)=-\left.\frac{\mathrm{d} a}{\mathrm{~d} \hat{s}}\right|_{0}=i \sum \mu_{i} C_{i} \\
& P(0)=\left.i \frac{\mathrm{~d} b}{\mathrm{~d} \hat{s}}\right|_{0}=i \sum \mu_{i}^{2} C_{i}
\end{aligned}
$$

$>$ bunching factor
> collective momentum

Cubic Differential Equation

Initial values are determined from following system of equations:

$$
\left(\begin{array}{l}
a_{0} \\
b_{0} \\
P_{0}
\end{array}\right)=\mathbf{M}_{\mu} \cdot\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
i \mu_{1} & i \mu_{2} & i \mu_{3} \\
i \mu_{1}^{2} & i \mu_{2}^{2} & i \mu_{3}^{2}
\end{array}\right) \cdot\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)
$$

which yields after matrix inversion:

$$
\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)=\mathbf{M}_{\mu}^{-1} \cdot\left(\begin{array}{l}
a_{0} \\
b_{0} \\
P_{0}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{3} & -\frac{i}{3} & -\frac{i}{3} \\
\frac{1}{3} & \frac{1}{6}(i+\sqrt{3}) & \frac{1}{3}(-1)^{5 / 6} \\
\frac{1}{3} & \frac{1}{6}(i-\sqrt{3}) & \frac{1}{3}(-1)^{5 / 6}
\end{array}\right) \cdot\left(\begin{array}{l}
a_{0} \\
b_{0} \\
P_{0}
\end{array}\right)
$$

Considering an initial energy shift $\hat{\eta}_{0}=\eta_{0} / \rho$:

$$
P(\hat{s}) \rightarrow\left\langle\hat{\eta}_{j} e^{-i \theta_{j}}\right\rangle+\hat{\eta}_{0} \quad \rightarrow \quad \mu^{3}-2 \hat{\eta}_{0} \mu^{2}+\hat{\eta}_{0}^{2} \mu-1=0
$$

Cubic Differential Equation

Case 1: start from already existing radiation field

Starting conditions:
$>$ no density modulation
$>$ no energy offset and modulation
$>$ Incoming radiation field

$$
\begin{aligned}
& \rightarrow b_{0}=0 \\
& \rightarrow \eta_{0}=0 \rightarrow P_{0}=0 \\
& \rightarrow \boldsymbol{a}_{0}>0
\end{aligned}
$$

$$
\Rightarrow \quad C_{1}=C_{2}=C_{3}=\frac{1}{3} a_{0}
$$

Field amplitude:

$$
a(\hat{s})=\frac{a_{0}}{3}\left\{e^{-i \hat{s}}+e^{\frac{1}{2}(i-\sqrt{3}) \hat{s}}+e^{\frac{1}{2}(i+\sqrt{3}) \hat{s}}\right\}
$$

Gain:

$$
G(\hat{s})=\frac{|a|^{2}}{a_{0}^{2}}=\frac{1}{9}\left\{3+e^{-\sqrt{3} \hat{s}}+e^{\sqrt{3} \hat{s}}+2 \cos \left(\frac{3}{2} \hat{s}\right) \cdot\left[e^{-\frac{\sqrt{3}}{2} \hat{s}}+e^{\frac{\sqrt{3}}{2} \hat{s}}\right]\right\}
$$

Cubic differential Equation

Case 1: start from existing radiation field

Universal gain curve:

$$
G(\hat{s})=\frac{|a|^{2}}{a_{0}^{2}}=\frac{1}{9}\left\{3+e^{-\sqrt{3} \hat{s}}+e^{\sqrt{3 \hat{3}}}+4 \cos \left(\frac{3}{2} \hat{s}\right) \cosh \left(\frac{\sqrt{3}}{2} \hat{s}\right)\right\}
$$

Asymptotical behavior for large \hat{s} :

$$
G \approx \frac{1}{9} e^{\sqrt{3} \hat{s}}=\frac{1}{9} e^{2 \sqrt{3} k_{u} \rho \cdot s}=\frac{1}{9} e^{s / L_{G}}
$$

Definition of the 1 dim gain length (power gain length):

$$
\sqrt{3} \hat{s}=1 \rightarrow L_{G}=\frac{1}{2 \sqrt{3} k_{u} \rho}=\frac{\lambda_{u}}{4 \pi \sqrt{3} \rho}
$$

Behavior for small s / L_{G} (Taylor expansion) \leftrightarrow "Lethargy"

$$
G_{\text {leth }}=1+\frac{1}{1080}\left(\frac{s}{L_{G}}\right)^{6}=1+\left(\frac{s}{3.2 L_{G}}\right)^{6}
$$

Universal Gain Curve

Saturation

Region of exponential increase:

$$
|a|^{2}=\frac{a_{0}^{2}}{9} e^{-s / L_{g}}=\frac{4}{3}|b|^{2}<\frac{4}{3} \approx 1
$$

\rightarrow field amplitude cannot grow larger than $|a| \approx 1$

$$
|a|^{2}=\left|\frac{\kappa_{1}}{2 k_{u} \rho^{2}} E\right|^{2} \leq 1 \rightarrow \quad \tilde{E}_{\text {sat }}=\frac{2 k_{u} \rho^{2}}{\kappa_{1}}
$$

$\rightarrow \mathcal{W}_{\text {sat }}=\frac{1}{2} \varepsilon_{0} E_{\text {sat }}^{2}=2 \varepsilon_{0}\left|\tilde{E}_{\text {sat }}\right|^{2}=2 \varepsilon_{0} \rho\left(\frac{2 k_{u}}{\kappa_{1}}\right)^{2} \rho^{3}=2 \varepsilon_{0} \rho n_{e}\left(\frac{\kappa_{2}}{\kappa_{1}}\right)=\rho n_{e} \gamma_{\text {res }} m_{0} c^{2}=\rho \mathcal{W}_{\text {beam }}$
and thus

Saturation

- $E_{0}=10^{5} \mathrm{~V} / \mathrm{m}-E_{0}=10^{6} \mathrm{~V} / \mathrm{m}$

Saturation

Maximum achievable gain factor depends on the amplitude of the incoming field

Gain and Bandwidth

Cubic Differential Equation

Case 2: Start from an existing density modulation

Starting conditions:
> Density modulation
$>$ Energy offset \rightarrow coll. e. modulation!
$>$ incoming radiation field

$$
\begin{aligned}
& \rightarrow b_{0}=\left.\left\langle e^{-i \theta_{j}}\right\rangle\right|_{0} \text { at } \lambda_{m} \approx \lambda_{r} \\
& \rightarrow \eta_{i}=0, \rightarrow P_{0}=\left.i b^{\prime}\right|_{0}=\hat{\eta}_{0} b_{0} \\
& \rightarrow a_{0}=0
\end{aligned}
$$

$$
\text { 童 } \Rightarrow C_{1}=-i \frac{b_{0}}{3}, \quad C_{2}=(-1)^{5 / 6} \frac{b_{0}}{3}, \quad C_{3}=(-1)^{1 / 6} \frac{b_{0}}{3} \quad \text { for } \eta_{0}=0
$$

Field energy:

Gain:

$$
|a|^{2}=\frac{2}{9} b_{0}^{2} G(\chi), \quad \chi=\frac{s}{L_{g}}
$$

$$
G(\hat{s})=\cosh \chi+\sqrt{3} \sin \left(\frac{\sqrt{3}}{2} \chi\right) \sinh \left(\frac{1}{2} \chi\right)-\cos \left(\frac{\sqrt{3}}{2} \chi\right) \cosh \left(\frac{1}{2} \chi\right)
$$

Universal Gain Curve

Gain and Bandwidth

Bandwidth

normalized gain@s=20 L_{g} :

Finding:
FEL Gain drops significantly, when the relative energy variation η exceeds the Pierce parameter ρ !
s-dependent energy bandwidth

$$
\Delta \eta(s)=3 \sqrt{\pi} \rho \sqrt{\frac{L_{g}}{s}}
$$

$\rightarrow \rho$ determines spectral width of the generated readiation!

Self Amplified Spontaneous Emission (SASE)

Was proposed in the beginning of the 1980s to produce high power short wavelength FEL radiation. 2 ways of considering the start of the FEL process:

- spontaneous emission at the beginning of the undulator is amplified,
- random longitudinal distribution of electrons leads to bunching nonvanishing factor at resonant frequency starting the FEL process.

Both pictures are fully equivalent!

Time structure:
Not the full bunch is contributing to the SASE start-up! Number of contributing electrons are determined by the undulator amplification bandwidth $\sigma_{\omega} \approx \rho \omega$!

Coherence or cooperation length L_{C}

 can be roughly determined from time-bandwidth product $\tau \cdot \sigma_{\omega}$:$$
\tau_{c}=\frac{\sqrt{\pi}}{\sigma_{\omega}} \approx \frac{\sqrt{\pi}}{\rho \omega}=\frac{\lambda_{L}}{2 \sqrt{\pi} \rho c} \quad \rightarrow \quad L_{C}=c \tau_{c}=\frac{\lambda_{L}}{2 \sqrt{\pi} \rho} \approx 300 \lambda_{L}
$$

Within the bunch, several areas can start a SASE process individually!

High Gain SASE FEL

- transv. emittance $\varepsilon_{x, y} \leq \lambda_{L} / 4 \pi$
© b®am requilrements:
- energy spread $\sigma_{\gamma} / \gamma<\rho$
- energy, current $\quad E_{\text {beam }} \approx \mathrm{GeV}, \quad I_{\text {peak }} \approx \mathrm{kA}$

Linac Coherent Light Source LCLS: the blue pint of all SASE FELs

FLASH and European XFEL: long pulse trains from s.c. Linacs

FLASH:		130 MeV		470 MeV		1.0 GeV		6.3 nm
XFEL:		500 MeV		2.0 GeV		17.5 GeV		0.1 nm

High Gain SASE FEL

Peak Brilliance

Figure of merit: peak brillance

$$
B=\frac{\frac{d}{d t} n}{4 \pi^{2} \Sigma_{x} \Sigma_{v} \Sigma_{x^{\prime}} \Sigma_{v^{\prime}} d \omega / \omega}
$$

$$
\Sigma^{2} \approx \sigma_{\gamma}^{2}+\sigma_{e}^{2}
$$

Undulator beam lines:

$$
B_{\text {peak }} \approx 10^{25} \mathrm{~mm}^{-2} \mathrm{mrad}^{-2} \mathrm{~s}^{-1}(0.1 \%)^{-1}
$$

Self-Seeded FEL

Requires MHz electron bunch repetition (storage ring or cw linac) Bandwidth determined by mirror system
"Seeding" by spontaneous synchrotron radiation, i.e. by shot noise

Increase peak current within mirco-bunches generated through laser modulation and subsequent compression

Cut out monochromatic portion from initial SASE FEL for seeding

> e.g. LCLS

Eur. XFEL
Generate coherent seeding pulse by external laser (synchronized to e-beam!)

FLASH:
$\lambda_{L}=38 \mathrm{~nm}$
Dto., but also produce higher FEL harmonics for further seeding stages.

Like HGHG, but generate very high harmonics by multiple compression and multiple seeding.

HGHG seeding with an oscillator starting from shot noise
e.g. Eur. XFEL
$\lambda_{L}<1 \AA$
e.g. XFELO planned @ Eur. XFEL

EEHG-FEL

Titerature

Recommended Textbooks:

- J.A. Clark, She Science and Sechnolagy of Undulatars and Wigglers, Oxford Science Publications, ISBN 019850855: Synchrotron Radiation, Undulators and Wigglers, includes technical aspects and many details
- P. Schmüser, M. Dohlus, J. Rossbach, C. Behrens, Free-Electron Lasers in the Ultrawialet and X-Ray Regine, Second Edition (2014), Springer, ISBN 9783319040806: The Hamburg Blue-Book on Free Electron Lasers
- K.-J. Kim, Z. Huang, R. Lindberg, Synchratran Radiation and Free-Electron Lasers, Cambridge University Press (2017), ISB 9781107162617: Excellent Book going deep into the theory of FEL way beyond the scope of this lecture
- K. Wille, She Physics of Particle Accelerators. An Introduction. Oxford University Press, Oxford (2001): A compact book with some insights in $L G$ FELs

