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Accelerators in Physics

 First accelerators built in 1920s/30s
 Accelerating protons, ions and electrons
 Positrons in 1960s
 Antiprotons in 1980s

 Tools for fundamental physics
 Hadron colliders

 E.g. LHC
 “Discovery machines”

 Electron positron colliders
 E.g. Large Electron Positron Collider (LEP)
 “Precision machines”

 Growing interest in building muon collider
 Muons first accelerated in 2017 – new tech
 Why muons? How?
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Muon Collider

 Lecture 1
 Why are muon collisions interesting?
 What are the ingredients required to make muons?
 Production of low emittances

 Lecture 2
 Rapid acceleration to fight muon lifetime
 Extremely low β* at the focus
 Experimental demonstration and staging

 how to make it happen
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Back to the Future...

 Effort to explore phenomena at higher and higher energies
 Corresponds to smaller scales
 Higher energy → bigger, more expensive, more power hungry
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E.g. circular colliders

By Pcharito - Own work, CC BY-SA 4.0

 Tevatron
 1.96 TeV proton - 

antiproton
  6.2 km circumference

 LEP/LHC
 14 TeV proton proton (LHC)
 209 GeV e+e- (LEP)
 27 km circumference

 FCC (proposed)
 90 – 350 GeV e+e-

 100 TeV proton-proton
 90-100 km circumference

Tevatron
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E.g. linear colliders

SLAC

ILC

 SLAC (California)
 3 km length
 90 GeV e+e-

 ILC (proposed)
 31 km
 500 GeV e+e-

 CLIC (proposed)
 380 GeV e+e-

 11 km



  

Electron-positron colliders

 Circular machines limited by synchrotron radiation
 Power emitted ~ E4/m4

 Practically limits centre-of-mass energy to ~ low 100s GeV
 Linear machines limited by available RF acceleration

 Practically limits centre-of-mass energy to ~ 100s GeV (TeV)
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Muons Physics Reach

 Seek a particle which
 Is not so low mass as an electron
 Is a fundamental particle

 Muons!

Energy at which 
cross-section is equal
     

Assuming equal  
Feynman amplitude
(EW)

    
Assuming factor 10 

   enhancement in pp 
(EW+QCD)

Delahaye et al, arXiv:1901.06150; very rough approx!
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Muons
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 Muon
 Half-life 2.2 μs
 Mass 105.658 MeV/c
 207 times electron mass

 What would a muon collider look like?
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Muon Collider
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 MW-class proton driver → target
 Pions produced; decay to muons
 Muon capture and cooling
 Acceleration to TeV & Collisions
 Designed for high energy while maximising luminosity

 Luminosity is key



  

It’s All About Luminosity

C. T. Rogers
Rutherford Appleton Laboratory
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Luminosity

 Luminosity is key challenge
 Number of events per cross-section per time
 Diffuse beam → low chance of particles colliding → low luminosity

 Change in integrated luminosity per beam jth crossing

 What drives luminosity? Can we relate luminosity to
 Repetition rate of accelerator
 Efficiency of muon creation
 Proton beam parameters
 Etc

N
+/-

 = Number of

μ+ or μ- on jth crossing

σꞱ = size of the beam in x/y

… assume cylindrical symmetry
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 The number of particles is always falling due to muon decay

Luminosity – stored muons (1)

Muon lifetime 
in the lab

Muon speed 

Distance between collisions 
i.e. collider circumference

Number of particles
entering collider
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 Luminosity (change in integrated luminosity per time)

Luminosity – stored muons (2)

Repetition rate (number of 
acceleration cycles per second)

Number of bunches 
per acceleration cycle
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Luminosity – stored muons (3)

 Assuming muon lifetime is long compared to ring time-of-flight

 So
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Luminosity – Facility efficiency

Number of muons per 
proton beam power
Number of muons per 
proton beam power

Efficiency of 
muon acceleration
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Luminosity – σꞱ (1)

Transverse beam 
size Definition of emittance

 Need very tight focusing!
 Limits:

 Focusing strength of magnets
 Chromaticity (focusing depends on energy)
 Hour glass effect (next slide)

x

p
x

Twiss 
function

Emittance
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Luminosity – σꞱ (2)

 Hour glass effect
 Even for collider ring with super small β*
 Small β* means short focal length
 Region of overlap is very short
 Bunch needs to be short as well!

 Introduce hour-glass factor fhg

 Relates the effective to lattice β*

 If  σz = β*
 Hour-glass factor is 0.76 

μ+

μ-

Region of 
overlapβ*

Effective β*



  20

Luminosity – σꞱ (3)

 Definition of longitudinal emittance

 So

 Recalling the expression for luminosity and N

 Bringing everything together

z

δ=E/E
0

σδ

σz



  21

Recap

1) Luminosity increases with the square of muon energy/power
 Number of collisions per bunch increases as muon lifetime increases
 Beam size decreases as energy increases (geometric emittance)

2) High field, low circumference collider ring → more luminosity
 Shorter path length, more collisions before muon decay

3) Low repetition rate, few bunches is best
 Assume that the bottleneck is in the number of protons
 Fewer collisions, but each collision is more intense

4) High quality muon source is essential
 Low emittance, good capture efficiency

5) Good efficiency acceleration is essential
 High voltage systems

 The whole muon collider is designed to maximise luminosity!

1
2

34

4 5



  

The Facility – From protons to muons
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Artificial Muons

23

 Muons produced by putting protons onto target
 Pions come out
 Pions decay radioactively to muons
 Enables an intense muon source

Muon 

Neutrino 

PionTarget

Proton 
beam

Neutrons, kaons, electrons, ... 

Electron
Neutrino 

Neutrino 
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Proton Source

1) Ion source: spark across H 
gas to make H- ions

2) Accelerate and focus in 
Radiofrequency Quadrupole

3) Chop into pulsed beam using 
fast/slow kicker

4) Accelerate in linac
5) Inject into a ring through a 

foil
6) Accelerate some more 

(maybe)
7) Compress the proton bunch 

to very short length
8) Extract and bring onto a 

target

1 2 3
4

5
67

8

ISIS neutron and muon source
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Charge Exchange Injection

 High current → accumulate beam over many turns
 Charge exchange injection of H- ions through a thin foil
 Foil removes electrons
 Issues: Scattering and energy loss of protons in foil

 Painting of beam into synchtron acceptance using fast 
“bumper” magnets

 Move recirculating/injected beam phase space
 Foil lifetime is critical limit
 Space charge at injection is critical limit

P during injection

H-
Thin foil

Pulsed dipoles
P after injection
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Bunch Compression

 Aim is to rotate the beam in longitudinal phase space
 Short proton bunch → short muon bunch
 Reduce longitudinal emittance of the muons

 Achieve bunch compression by rotation in the RF bucket
 Limitations:

 Microwave instability → higher energy
 Space charge → higher energy

M. Aiba, CERN-AB-2008-060 BI (2008)
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MC Target

X. Ding et al, Carbon and Mercury target system for muon colliders and neutrino factories, IPAC16

 Protons on target → pions → muons
 Heavily shielded, very high field solenoid captures π+ and π -

 Challenge: Energy deposition on solenoid
 Challenge: Solid target lifetime
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Radiation issues (magnet)

 Radiation load significant 
issue

 Degrades insulation/glue
 Requires more cooling

 1 kW heat → O(200) kW 
electricity

 Shield at room temperature
 Magnet at superconducting 

temperature
 HTS → warmer, more 

efficient

Neutrino factory, Bogomilov et al, PRSTAB 17 (2014)

Cryogenic

Room temp
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Radiation issues (target)

 Radiation on target can make 
an issue

 Instantaneous shock
 Long term radiation damage

 Liquid metal targets (Pb)
 Cavitation issues
 Specific issues around Hg

 Flowing/moving solid targets
 Geometry issues
 Target wheels – e.g. PSI
 Fluidised powder
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Muon front end

 Muon front-end to capture muon beam
 Solenoid taper
 Solenoid chicane removes high momentum particles
 Beryllium plug removes low momentum impurities
 Longitudinal capture system

 Adiabatically bunch beam
 Phase rotate
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Chicane/proton absorber

 Solenoid chicane
 No dipoles!
 Vertical dispersion → low pass filter
 Excellent transport properties within 

acceptance
 Beryllium plug

 Protons stop more quickly than muons/pions
 Removes low momentum protons
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Buncher/Phase Rotator

 Drift to develop energy-time relation 
 Buncher adiabatically ramp RF voltages
 Phase rotator → misphase RF

 High energy bunches decelerated
 Low energy bunches accelerated

time

m
om

en
tu

m
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Luminosity consideration

 Proton beam power ~ 1-2 MW →  (FNAL, JPARC, SNS)
 Approx 0.1 μ+/- per 8 GeV proton → O(1e14) muons per MW
 BUT: muon front end produces multiple bunches (about 20)
 Rep rate is between 60 Hz (SNS) and 0.1 Hz (JPARC)
 Emittance is huge

Number of muons per 
proton beam power

Efficiency of 
muon acceleration

Rep rateNumber of 
bunches

Proton beam power

= 4.4e36 MeV MW-2 T-1 s-2



  

The Facility – Ionisation Cooling

C. T. Rogers
Rutherford Appleton Laboratory
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 Muon front end produces huge flux of muons
 Muons have too large emittance at the source
 How can we reduce beam emittance? COOLING!

 Laser cooling
 Stochastic cooling
 Electron cooling
 Too slow

 Ionisation cooling (and Frictional cooling)

Ionisation Cooling - intro



  

Absorber

 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more straight

 Multiple Coulomb scattering from nucleus ruins the effect
 Mitigate with tight focussing
 Mitigate with low-Z materials
 Equilibrium emittance where MCS completely cancels the 

cooling

Ionisation Cooling

MUONSRF



  

 Normalised RMS beam emittance in 2D
 area of ellipse aligned with beam

                              are variance and covariance
 Also written as <uiuj>

 Can be written as

 In higher dimensions the definition generalises

Beam emittance in 4D

x

p
x

σ(x,p
x
)

σ(x)

σ(p
x
)



  

 Say we pass through some material at a focus
 P decreases due to ionisation
 Multiple Coulomb Scattering increases angular spread

 For a cylindrically symmetric beam with angular divergence 

The change in emittance is given by

Transverse cooling (1)



  

 Only pz and              change; applying product rule

 Use (from E2 + p2 = m2)

 Use standard formula

 Use scattering (from atomic physics)

 Gives

Transverse cooling (2)



  

 Rearranging

 There exists an equilibrium emittance where the two terms 
balance (no emittance change)

Transverse cooling (3)

dE/dz is negative!
Cooling

dE/dz is negative!
Cooling

Heating



  

 In longitudinal phase space, the beam is usually heated
 Heating due to random noise in the energy loss I.e. “straggling”
 Heating due to curvature in energy loss (heating or weak cooling)

 Mitigate using emittance exchange
 Move emittance from longitudinal to transverse phase space

Longitudinal Heating
Low energy particle 
loses more energy

High energy particle 
loses less energy



  

 Initial beam is narrow with some momentum spread
 Low transverse emittance and high longitudinal emittance

 Beam follows curved trajectory in dipole
 Higher momentum particles have higher radius trajectory
 Beam leaves dipole wider with energy-position correlation

 Beam goes through wedge shaped absorber
 Beam leaves wider without energy-position correlation
 High transverse emittance and low longitudinal emittance

Emittance exchange

Dipole
Wedge 
shaped 
absorber



  

 Longitudinal emittance change becomes

Emittance exchange

dispersion Effective density 
Variation with position

 Transverse emittance change becomes



  

Summary – Lecture 1
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Rutherford Appleton Laboratory
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Final Word – Part 1

 The muon collider is an exciting prospect
 An opportunity to build a sustainable path in HEP

 Wall plug power
 Energy reach

 Many challenges remain on the road
 Luminosity is the key
 Capture and cooling of the muon beam

 Ionisation cooling
 Next lecture, explore

 How ionisation cooling may be realised in practice
 Acceleration
 Collision
 The path to a muon collider
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