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Recap

● Landau damping stems from the interaction of single particles with 
waves

– A necessary condition for Landau damping is the a comparable velocity / 
frequency of the wave and the particles motion

● While collective forces such as wake fields or electron clouds tend to 
generate unstable modes of oscillation, Landau damping stabilises them 
without emittance growth

– An external perturbation may also decay through a similar phenomenon, 
we rather talk about decoherence or filamentation. This mechanism 
leads to emittance growth

● Landau damping originates in the spread of oscillation frequencies of the 
particles in the beam

– It is a linear mechanism, as in plasmas. However in accelerators the 
frequency spread often originates from non-linear forces
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Content

● Part I (concept)

– Wave – particle interaction

– Van Kampen approach

– Stability diagram and beam transfer function

● Part II (applications)

– Longitudinal and transverse Landau damping in unbunched and 
bunched beams

– Non-linear collective forces

– Advanced Landau damping techniques
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Longitudinal stability of unbunched beams

● In unbunched beam, density modulations 
may self-enhances under the influence an 
impedance (e.g. Negative mass instability)

n=4

[Chao]
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impedance (e.g. Negative mass instability)

● Landau damping of such instabilities 
originiates in the spread in revolution 
frequencies for particles with different 
momentum

– The dispersion relation takes a special 
form:

Distribution of 
revolution frequencies

Mode number

Mode frequency (including 
Landau damping)

Mode frequency shift driven 
by wake fields
(without Landau damping)

n=4

Linked to the 
absence of 
focusing

e.g. from perturbation theory:
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Stability diagram – Keil-Schnell criterion

● The beam is always unstable 
without energy spread

[Chao,
Herr]
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Stability diagram – Keil-Schnell criterion

● Usually the frequency distribution is poorly 
known, Keil-Schnell derived a conservative 
criterion based on the inscribed circle:

● The beam is always unstable 
without energy spread

● The stability diagram is strongly 
impacted by the assumed 
frequency distribution

● Revolution frequency spread:

Momentum spread

[Chao,
Herr]
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Microwave instability in bunched beams

● The KS criterion also provides a good indication of the requirement to 
stabilise the microwave instability in bunched beams

→ Keil-Schnell-Boussard criterion

[Micro]
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Transverse unbunched beams

● Transverse oscillations of unbunched 
beams can also be driven unstable by the 
interaction with an impedance

● The dispersion integral takes the form:

n=4
Transverse frequency shift caused by the 
impedance, e.g. from perturbation theory:

Transverse 
frequency spread

● Simplified criterion:

● Sources of transverse 
frequency spread:

– Revolution frequency

– Chromaticity (Q’)

[Chao]
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Bunched beams

● Similar simplified criterions can be dervied for bunched beams:

[Laclare]
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Longitudinal stability of bunched beams

● For bunched beams, the longitudinal focusing provokes oscillations around the 
fixed point with 

→ As RF cavities function with sine wave, the focusing force is non-linear

● The behaviour is identical to the pendulum 
without the small angle approximations
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Longitudinal stability of bunched beams [Damerau]
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Longitudinal stability of bunched beams

● Filling the available bucket is key to maintain 
Laudau damping in the longitudinal plane
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Double harmonic RF

● With a second harmonic RF (featuring a lower voltage) the total 
voltage becomes more non-linear

Main RF 

Harmonic RF

Total
Bunch
lengthening
mode

Bunch
shortening
mode

● The tune spread can be enhanced (or reduced) depending on the relative phase 
and voltage of the two RF systems

→ Improve / deteriorate Landau damping
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Transverse stability

● In high energy machines, the frequency spread linked to revolution 
frequency and the chromaticity is usually small

● Chromatic sextupole magnets are non-linear, yet to first order they don’t 
contribute to the transverse tune spread

→ Dedicated octupole magnets (aka Landau octupoles)

[Octupole]
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Magnets
Chromatic sextupoles,

Landau octupoles

Impedance
Beam pipe dimensions,

Beam equipment designs
(e.g. instrumentation, collimator,

Vacuum valves),
Material choices, transistions

Operation
Adiabatic damping during energy ramp

(RF voltage functions, longitudinal blowup)
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Fuego’s theoretical catch

● In plasmas, only the density of 
velocity matters

→ A treatment based on the 
frequency distribution remains a 
reasonable approximation for 
many applications in accelerator

● When the frequency spread arise 
from non-linear forces, the treatment 
is slighty different
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Non-linear collective forces

● Some collective forces are non-linear, they have an impact on Landau 
damping

–  Due to their dynamic nature, they lead to different behaviours

→ Different dispersion relations
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Stability of the rigid bunch mode with space-charge

Tune shift of mode n

Amplitude detuning 
due to space-chargeTune of the mode including 

Landau damping

Amplitude detuning due to 
external non-linearities
(e.g. octupole magnets)

● By shifting the so-called incoherent spectrum from the 
coherent modes, space-charge can remove Landau 
damping for modes otherwise stabilised e.g. by octupoles

[Metral, 
Kornilov]
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Decoherence of the rigid bunch mode with space-charge

● The motion of the centroid is not affected by space-charge

→ Coherent mode

● The motion of single particles around the centroid is affected

→ Incoherent tune spread

Without space-charge With space-charge
Turn

6000
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Stability of the rigid bunch mode with beam-beam
● A similar effect occurs with the coherent modes generated by beam-beam 

interactions

→ They are outside of the incoherent spectrum, Landau damping is lost

Incoherent spectrum

[Pieloni]
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Stability diagrams with beam-beam

● If the coherent modes are suppressed (e.g. with an active feedback), the 
remaining tune spread can be beneficial for other modes

[Buffat,
Chao2]
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Stability diagrams with beam-beam

● If the coherent modes are suppressed (e.g. with an active feedback), the 
remaining tune spread can be beneficial for other modes

● Due to its different dependence on the action, the amplitude detuning due to head-
on beam-beam interactions is more efficient at producing Landau damping than 
octupoles!

→ Maybe we should be inspired ?

[Buffat,
Chao2]

20 / 27



15.11.2022 CERN Accelerator School 

The issue with non-linear forces

● Along with the tune spread required for Landau damping, non-linearities come with 
detrimental effect for the single particle trajectories:

– Resonances, chaotic motion and eventually beam quality degradation 
(particles losses, emittance growth)

→ The amount of Landau damping that can be obtained with octupoles is limited 
by their impact on beam losses 
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Electron lens

Chaos

Too strong octupoles ‘beam-beam like’ e-lens

Stable
trajectories

Electron
beam Proton 

beam

The gun design allows for various electron beam shapes
→ Optimise the force to maximise Landau damping with least impact on the beam quality

[RHIC,
elens]
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Non-linear integrable optics

● It is possible to introduce ‘good’ non-linearities that generate a tune spread 
yet maintaining some invariants of motion

→ Possibly strong Landau damping without deterioration of the beam quality

[NLIO,IOTA, 
McMillan]
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A series of independently powered octupoles to 
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Non-linear integrable optics

● It is possible to introduce ‘good’ non-linearities that generate a tune spread 
yet maintaining some invariants of motion

→ Possibly strong Landau damping without deterioration of the beam quality

A series of independently powered octupoles to 
generate a non-linear integrable optics at IOTA

Density profile of a 
‘McMillan’ e-lens

[NLIO,IOTA, 
McMillan]
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Transverse detuning with longitudinal amplitude [Schenk. 
RFQ]

24 / 27



15.11.2022 CERN Accelerator School 

Transverse detuning with longitudinal amplitude [Schenk. 
RFQ]

Transverse frequency shift

24 / 27



15.11.2022 CERN Accelerator School 

Transverse detuning with longitudinal amplitude [Schenk. 
RFQ]

Transverse frequency shift
Longitudinal 
oscillation 
amplitude

24 / 27



15.11.2022 CERN Accelerator School 

Transverse detuning with longitudinal amplitude

● Transverse detuning with 
longitudinal amplitude can be 
achieved with

– Dedicated optics (non-linear 
chromaticity)

– RF quadrupoles

[Schenk. 
RFQ]
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Summary

● In some cases Landau damping arise naturally in accelerators
– Momentum spread
– Chromatic spread
– Non-linearity of the longitudinal focusing (RF wave)
– Non-linearity of collective forces (Space-charge, beam-beam)

→ Watch out ! Due to their dynamic nature, the collective forces can lead to 
loss of Landau damping, by shifting the coherent mode frequencies w.r.t. the 
incoherent spectrum
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Summary

● In some cases Landau damping arise naturally in accelerators
– Momentum spread
– Chromatic spread
– Non-linearity of the longitudinal focusing (RF wave)
– Non-linearity of collective forces (Space-charge, beam-beam)

→ Watch out ! Due to their dynamic nature, the collective forces can lead to 
loss of Landau damping, by shifting the coherent mode frequencies w.r.t. the 
incoherent spectrum

● If this is not sufficient, specific devices are used
– Harmonic RF cavities (aka Landau cavities)
– Landau octupoles
– More advanced tools (electron-lens, special magnets, RF quadrupoles)

● Several aspect of accelerator design are driven by the need for Landau 
damping (Beam parameters, optics, operation, ...)

● Landau damping is beneficial to maintain the beam quality, 
however the means to generate Landau damping can have a 
bad impact on the trajectories of single particles, leading to a 
deterioration of the beam quality
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