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usually characterized by the slope at the 
center → focal length

- (i.e. focusing) for opposite charged beams
+ otherwise

● For small shifts and away from integer and 
half-integer resonances we have:

● In these conditions the beam-beam tune shift is independent of the beam 
energy and of 
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● When the transverse beam sizes are not equal, the we get the Bassetti-

Erskine formula:

Complex error function

● When the beams are not round the beam-beam 
tune shift depends on the energy and the β*s

● For flat beams 
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transverse beam size is no longer constant 
through the beam-beam interaction

→ Hourglass effect 

● This effect is usually modelled as a succession of beam-beam interactions 
with fixed beam sizes → Back to Bassetti-Erskine

● Note: We assume that fields are purely transverse → ultra-relativistic 
approximation

9 / 29



15.11.2022 CERN Accelerator School 

Finite bunch length effects: Crossing angle

● When the beams collide with a crossing angle, the fields are no longer 
perpendicular to the propagation of the particle

→ Use a boosted frame that follows the transverse position of the particle

[Hirata]

10 / 29



15.11.2022 CERN Accelerator School 

Finite bunch length effects: Crossing angle

● When the beams collide with a crossing angle, the fields are no longer 
perpendicular to the propagation of the particle

→ Use a boosted frame that follows the transverse position of the particle

[Hirata]

10 / 29



15.11.2022 CERN Accelerator School 

Finite bunch length effects: Crossing angle

● When the beams collide with a crossing angle, the fields are no longer 
perpendicular to the propagation of the particle

→ Use a boosted frame that follows the transverse position of the particle

[Hirata]

10 / 29



15.11.2022 CERN Accelerator School 

Finite bunch length effects: Crossing angle

● When the beams collide with a crossing angle, the fields are no longer 
perpendicular to the propagation of the particle

→ Use a boosted frame that follows the transverse position of the particle

[Hirata]

10 / 29



15.11.2022 CERN Accelerator School 

Finite bunch length effects: Crossing angle

● When the beams collide with a crossing angle, the fields are no longer 
perpendicular to the propagation of the particle

→ Use a boosted frame that follows the transverse position of the particle

[Hirata]

10 / 29



15.11.2022 CERN Accelerator School 

Finite bunch length effects: Crossing angle

● When the beams collide with a crossing angle, the fields are no longer 
perpendicular to the propagation of the particle

→ Use a boosted frame that follows the transverse position of the particle

[Hirata]

10 / 29



15.11.2022 CERN Accelerator School 

Finite bunch length effects: Crossing angle

● When the beams collide with a crossing angle, the fields are no longer 
perpendicular to the propagation of the particle

→ Use a boosted frame that follows the transverse position of the particle

● In the boosted frame the collision can again be discretised in a set of beam-
beam kicks with varying offset (and size if hourglass is strong)

→ Bask to Bassetti-Erskine

[Hirata]
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Dynamic effects

● Taking into account only the linearised part of the beam-beam force, we can 
compute the new optics including beam-beam:

● In machines featuring strong synchrotron radiation, the change in optics 
leads to a change in equilibrium emittance:
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Weak beam
● Perturbed beam parameter
● Perturbed orbit / optics

Beam-beam force

● When the impact of the weak beam 
on the strong beam is neglected, we 
talk about weak-strong models

Strong beam
● Perturbed beam parameter
● Perturbed orbit / optics

Strong beam
● Perturbed beam parameter
● Perturbed orbit / optics

● If not, we talk about strong-strong 
models

→ Need self-consistent solutions
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Flip-flop

● The self-consistent dynamic β effect is obtained through a set of non-linear 
coupled equations:

● There can exist multiple solutions:

Equal 
beam 
sizes

[Chao]
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In-phase oscillations Out of phase oscillations

● The average beam-
beam force is zero at 
each turn

→ 

● The beams are offset at 
every turn

→ The frequency of the 
mode depends on the 
strength of the beam-
beam force: 

Yokoya factor (1.0 to ~1.3) 
due to the non-linearity of 
the force

[Pieloni]
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Tevatron ?
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Compensation with an electron lens

● Using an electron lens with a 
Gaussian profile on the tune 
spread is reduced

→ Improved beam quality 
preservation 

RHIC

[elens]
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→Increased luminosity without increasing the beam-
beam force 

● When operating with many bunches, head-on collisions outside of the 
designed IPs (aka parasitic interactions) have to be avoided

Two beams in one beam pipe 
→ The pretzel scheme
(SppS, CESR, LEP, Tevatron)

Beams in separate beam pipes
(DAΦNE, PEP-II, SuperKEKb, HERA, RHIC, LHC)

[Pretzel]
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Long-range interactions
● With the pretzel scheme or when the common beam pipe is longer than the distance 

between collisions (here LHC) parasitic interactions occur with a transverse offset

Far from the beam center 
the force goes with 1/r
→ Comparable to the 
magnetic field of current 
carrying wire... 
Compensation !

● Long-range interactions 
can deteriorate the beam 
quality due to their non-
linear nature

→ Minimal crossing angle

~120 m
The average force away from 
the beam center is not 0
→ Orbit effect !
     (self-consistent)
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Large crossing angle and crab waist
● It is often needed to fully avoid 

parasitic encounters:
FCC-ee: 2 m

● So-called crab sextupoles can be 
used to improve the non-linear 
dynamics of the beam

with crab sextrupolesw/o crab sextrupoles

[Raimondi, 
Shatilov]

21 / 29



15.11.2022 CERN Accelerator School 

The crab confusion

22 / 29



15.11.2022 CERN Accelerator School 

Typical modern circular collider setups

Hadrons
● The head-on beam-beam parameter is limited by emittance preservation and

beam losses

e+e-

Electron lens compensation

23 / 29



15.11.2022 CERN Accelerator School 

Typical modern circular collider setups

Hadrons
● The head-on beam-beam parameter is limited by emittance preservation and

beam losses

e+e-

● Strong synchrotron radiation damping allows for larger beam-beam parameters

Electron lens compensation

23 / 29



15.11.2022 CERN Accelerator School 

Typical modern circular collider setups

Hadrons
● The head-on beam-beam parameter is limited by emittance preservation and

beam losses

● Two pipes, many bunches and a small crossing angle
● Long common regions featuring several parasitic interactions

→ Crab cavities, wire compensation

e+e-

● Strong synchrotron radiation damping allows for larger beam-beam parameters

Electron lens compensation

23 / 29



15.11.2022 CERN Accelerator School 

Typical modern circular collider setups

Hadrons
● The head-on beam-beam parameter is limited by emittance preservation and

beam losses

● Two pipes, many bunches and a small crossing angle
● Long common regions featuring several parasitic interactions

→ Crab cavities, wire compensation

e+e-

● Strong synchrotron radiation damping allows for larger beam-beam parameters

● Two pipes, many bunches and a large crossing angle
→ Crab waist scheme

Electron lens compensation

23 / 29



15.11.2022 CERN Accelerator School 

Typical modern circular collider setups

Hadrons
● The head-on beam-beam parameter is limited by emittance preservation and

beam losses

● Two pipes, many bunches and a small crossing angle
● Long common regions featuring several parasitic interactions

→ Crab cavities, wire compensation
● The beam lifetime is dominated by burn-off due to large hadronic cross sections

e+e-

● Strong synchrotron radiation damping allows for larger beam-beam parameters

● Two pipes, many bunches and a large crossing angle
→ Crab waist scheme

Electron lens compensation

23 / 29



15.11.2022 CERN Accelerator School 

Typical modern circular collider setups

Hadrons
● The head-on beam-beam parameter is limited by emittance preservation and

beam losses

● Two pipes, many bunches and a small crossing angle
● Long common regions featuring several parasitic interactions

→ Crab cavities, wire compensation
● The beam lifetime is dominated by burn-off due to large hadronic cross sections

e+e-

● Strong synchrotron radiation damping allows for larger beam-beam parameters

● Two pipes, many bunches and a large crossing angle
→ Crab waist scheme

● The beam lifetime is dominated by unwanted collisional processes
(Toushek, beamstrahlung, Bhabha scattering)

Electron lens compensation
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Beamstrahlung
● In high energy electron-positron colliders the beam-beam force can be 

strong enough to generate high energy photons: Beamstrahlung

● Similarly to synchotron radiation, beamstrahlung leads to

– Energy loss (→ Touschek  + Beamstrahlung + Bhabha scattering lifetime)

– Emittance damping

– Quantum excitation

New equilibrium emittances
→ High momentum acceptance needed!

● We may apply the same formalism as for synchrotron radiation in a dipole, yet the 
bending radius is now defined by the non-linear beam-beam force

 → ‘local’ bending radius, for example: 

[BS]
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Beamstrahlung power

● For FCC-ee beamstrahlung generates hundreds of kW of photons 
propagating downstream of the IP

→ Need dedicated absorbers

...

[FCCee, 
BSDump]
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Beam-beam in linear colliders

● The beam-beam force represents an 
additional focusing force at the IP 
which enhances the luminosity!

● The strength of the beam-beam 
force is rather characterised by the 
disruption parameter

● As the beam quality does not have to be preserved after the collision, beam-
beam forces can be much stronger in linear colliders

[Schulte]
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Beam-beam in linear colliders

● The beam-beam force represents an 
additional focusing force at the IP 
which enhances the luminosity!

● The strength of the beam-beam 
force is rather characterised by the 
disruption parameter

● As the beam quality does not have to be preserved after the collision, beam-
beam forces can be much stronger in linear colliders

● As some particles lose energy to 
beamstrahlung during the collision, 
they may collide with a lower energy

→ Impact on luminosity spectrum

→ Need to maximise luminosity while 
minimising beamstrahlung

[Schulte]
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Summary

● The beam-beam force is obtained by subdividing the interaction of the two 
beams into a set of slice-particle interactions, where the Bassetti-Erkine 
formula applies (e.g. using a boosted frame)
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Summary

● The beam-beam force is obtained by subdividing the interaction of the two 
beams into a set of slice-particle interactions, where the Bassetti-Erkine 
formula applies (e.g. using a boosted frame)

● The beam-beam force will modify the properties of the beams

– Tune shift, dynamic β, dynamic emittance, orbit effects, ...

● In the strong-strong regime, the modifications of the two beams have to be 
considered self-consistently

– Beam-beam oscillation modes, flip-flop, ...

● The design of colliders is driven by the beam-beam effects in various ways

→ Maximisation of the luminosity minimising deterimental effects of the 
beam-beam interactions on the beam quality

→ Very different limits in hadron / e+e-, circular / linear colliders
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