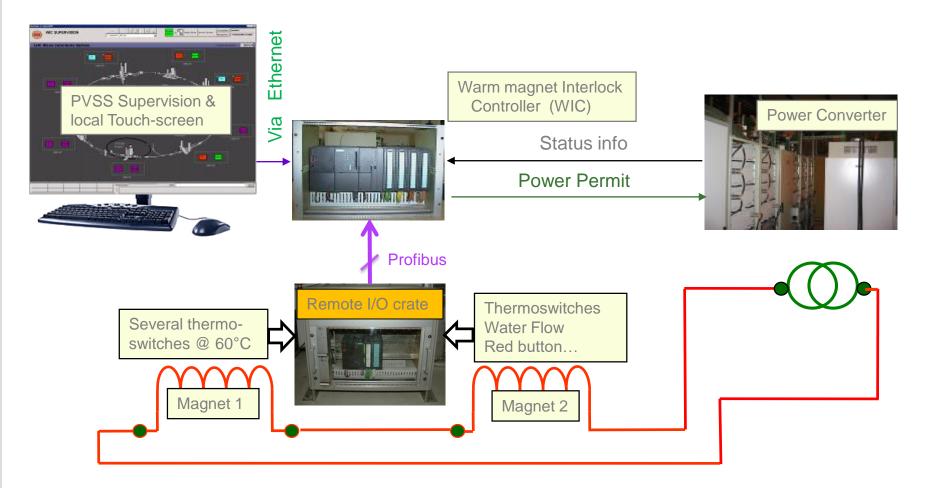


Single Event Effects in

Warm magnet Interlock Controller (WIC)

during Ti8 tests

- Principle of the Warm magnet Interlock Controller (WIC)
- The Remote I/Os (composition & location)
- The Radiations tests made at CERN in 2002/2003
- The additional Radiations tests at PSI-Villingen
- The Event during Ti8 tests



- Principle of the Warm magnet Interlock Controller (WIC)
- The Remote I/Os (composition & location)
- The Radiations tests made at CERN in 2002/2003
- The additional Radiations tests at PSI-Villingen
- The Event during Ti8 tests

Remote I/Os collect the information coming from the magnets and are connected to the WIC through Profibus. WIC is installed in LHC, Transfer Lines (TL) SPS – LHC, LEIR & LINAC3

- Principle of the Warm magnet Interlock Controller (WIC)
- The Remote I/Os (composition & location)
- The Radiations tests made at CERN in 2002/2003
- The additional Radiations tests at PSI-Villingen
- The Event during Ti8 tests

The Remote I/Os crates consist of:

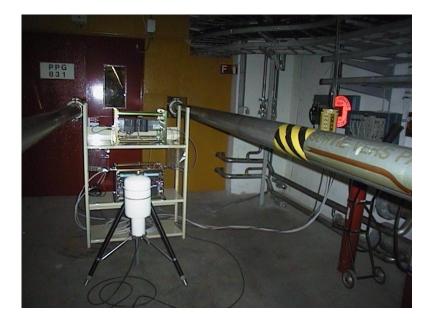
- 24V Power Supply (from EXISTA)
- SIEMENS Modules:
 - PROFIBUS INTERFACE IM 153-1 ET200M 6ES7 153-1AA03-0XB0
 - 32 DIGITAL INPUT SM 321 6ES7 321-1BL00-0AA0
 - RS485 REPEATER 6ES7 972-0AA01-0XA0

Location of the Remote I/Os crates

The Remote I/Os are installed under Dipoles or the vacuum pipe but far from the quadrupoles

Number of Remote I/Os crates used in the TL

- 18 Remote I/Os for TI2 controlling 300 magnets
- 20 Remote I/Os for TI8 controlling 403 magnets
- 6 Remote I/Os for TT41 (CNGS) controlling 145 magnets



- Principle of the Warm magnet Interlock Controller (WIC)
- The Remote I/Os (composition & location)
- The Radiations tests made at CERN in 2002/2003
- The additional Radiations tests at PSI-Villingen
- The Event during Ti8 tests

Tests performed in TCC2 & TT60 - Run 2002 & 2003

Tests Installation in TCC2

Additional tests performed in TT60 → beginning of the Ti2 line

	Module	Туре	Serial Nº	Dose (Gray)	SEE (n/cm ² x10 ¹²)	Duration (weeks/days)	
TCC2 Tests Results	ET 200 M ET 200 M ET 200 M	6ES7 153-1AA03-0XB0 6ES7 153-1AA03-0XB0 6ES7 153-1AA03-0XB0	S C-NNE79333 S C-P3F0623 S C-P3F41194	277 280 210	1,87 1,96 1,57	6 w 5 w 4 w	
	SM 321 16DI (ET 200M) SM 321 32DI (ET 200M)	6ES7 321-1BH02-0AA0 6ES7321-1BL00-0AA0	S C-NNF16364 S C-P3F64025	136 500	0,97 3,69	4 w 9 w	
	PS ACT 50	ACT50	4000,1270	942	8,02	17 w	
	Profibus Repeater	6ES7 972-0AA01-0XA0	S C-P5C65251	268	2,05	5 w	

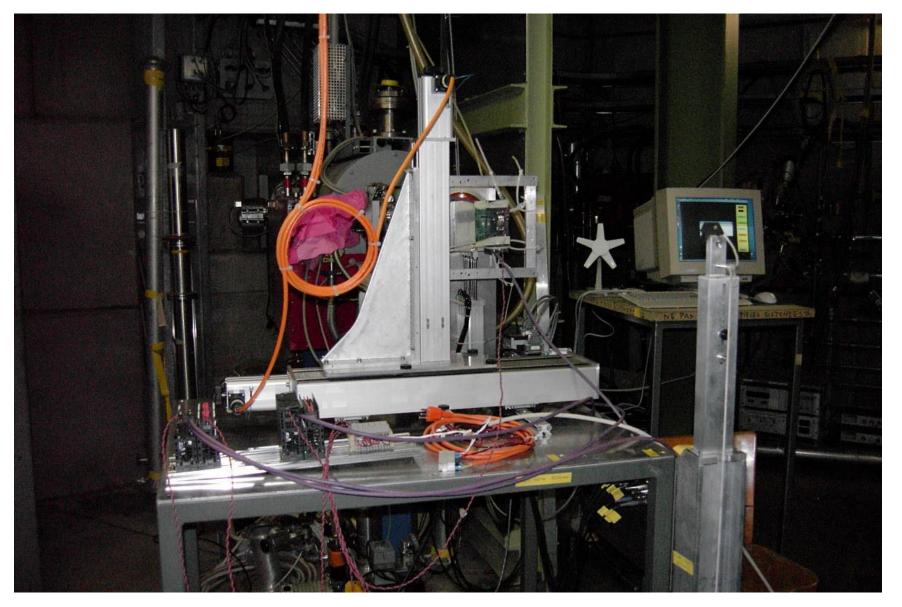
	Module	Туре	Serial Nº	Dose SEE (Gray) (n/cm ² x10 ¹²)		Duration (weeks)
	ET 200 M	6ES7 153-1AA03-0XB0		22	5,82	17
	SM 321 32DI (ET 200M)	6ES7321-1BL00-0AA0		22	5,82	17
ts	PS 307 2A	6ES7 307-1BA00-0AA0		22	5,82	17
.5	PS ACT 50			22	5,82	17
	PS Syko			22	5,82	17
	PS Sitop 5A	6EP1333-1AL11		22	5,82	17
	Profibus Repeater	6ES7 972-0AA01-0XA0	S C-P5C65550	8,1	4,68	5

TT60 Tests **Results**

Module	Туре	Serial №	Indice	Dose in 2002 (Gray)	Dose in 2003 (Gray)	Total Dose
ET 200 M	ET 200 M 6ES7 153-1AA03-0XB0		6		100 Gy	100 Gy
21 200 m		S C-R2D90385	6		129 Gy	129 Gy
SM 321 32 DI	6ES7 321-1BL00-0AA0	S C-P9B51289	4		129 Gy	129 Gy
		S C-R1G72304	4		129 Gy	129 Gy
	6ES7 972-0AA01-0XA0	S C-P5C65251	4	268 Gy	32 Gy	300 Gy
Repeteur		S C-NND98373	3		57 Gy	57 Gy
		S C-R2B29941	4		38 Gy	38 Gy

Module	Туре	No de serie	Indice	Radiation		Radiation
				<u>recu en 2002</u>	<u>recu en 2003</u>	total recu
Alim. Siemens PS307 2A Modifie	6ES7 307-1BA00-0AA0	S Q6P4386490	3		38 Gy	38 Gy
(Alim. modifiee par Siemens: M		38 Gy	56 Gy			
Alim. Siemens Sitop 5A	6EP 1333 - 1AL11	S Q6P4388995	3		68 Gy	68 Gy
Alimentations ACT50 1x24V	??	TCC2			129 Gy	129 Gy
Alimentations ACT50 2x24V	ACT50	4000, 1270 (TCC2)		942 Gy	129 Gy	1071 Gy
	7 55 222 001 0	2.06007 (TCC2)		550 Gy	129 Gy	679 Gy
Alimentations Syko 2x24V	7.55.233.001.0	2.06006 (TCC2)		942 Gy	129 Gy	1071 Gy

- Principle of the Warm magnet Interlock Controller (WIC)
- The Remote I/Os (composition & location)
- The Radiations tests made at CERN in 2002/2003
- The additional Radiations tests at PSI-Villingenin 2003 & 2009


In order to have a better precision

- The Event during Ti8 tests

Irradiation facility- OPTIS - PSI / Villingen

Material tested	Туре	Indice	Maximal dose (Gray)	Comments
Slave Module ET 200 M (Siemens)	6ES7 153-1AA03-0XB0	7	280	 * During irradiation several voluntary power supply "on/off" without problem. *After 70 grays of irradiation - module down but comes "ok" without any action
Digital Module 32 DI (Siemens)	6ES7 321-1BL00-0AA0	4	190	* During irradiation several voluntary power supply "on/off" without problem.
Répéteur Profibus	6ES7 972-0AA01-0XA0	6	89	30mm collimator on DRASIC -ST 03333 KU 002 circuit
(Siemens)		6	110	no collimator - irradiation on the power circuits
Switching Power supply (Exista)	ASC 50 24 V		370	Starting voltage = 24,598 V - current = 246,33mA End voltage = 25,51 V - current = 247,158mA

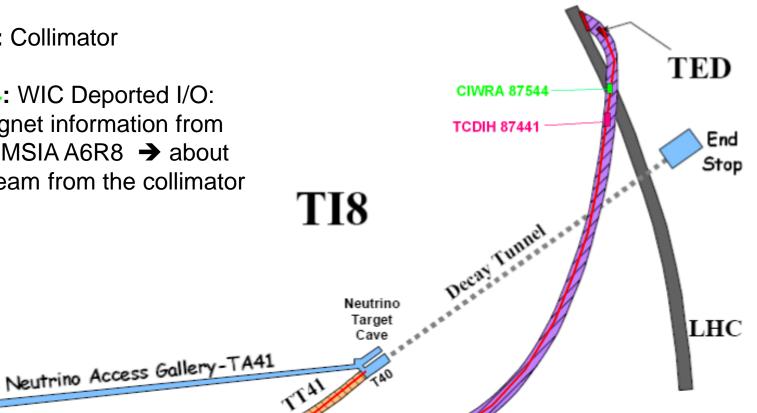
140 Gy=1*10^E11 protons à 60 MEV Nb de protons: 450 / (140 * $10^{E}11$) = **3.21429 E+11** Durée d'exposition: (3.21429 E+11 / 1* 10^{E+8}) / 60 = 54 minutes

Material tested	Туре	Indice	Maximal dose (Gray)	Comments	
Digital Module 24 DI Safety		2	20	We had to participe a react during each	
(Siemens)	6ES7 326-1BK01-0AB0	2	19.5	We had to perform a reset during each irradiation (11 in total)	
Slave Interface ET200M		16	226	During irradiation the Profibus address	
(Siemens)	6ES7 153-1AA03-0XB0	16	200	was several times corrupted after a new Profibus cycle or reset module was OK	
Digital Output Module DOx8 AC230V/5A Relay (Siemens)	6ES7 322-1HF10-0AA0	2	500	Irradiation was stopped after 500Gy only the output LEDS were broken	

- Principle of the Warm magnet Interlock Controller (WIC)
- The Remote I/Os (composition & location)
- The Radiations tests made at CERN in 2002/2003
- The additional Radiations tests at PSI-Villingen
- The Event during Ti8 tests

TJ8

TBSE

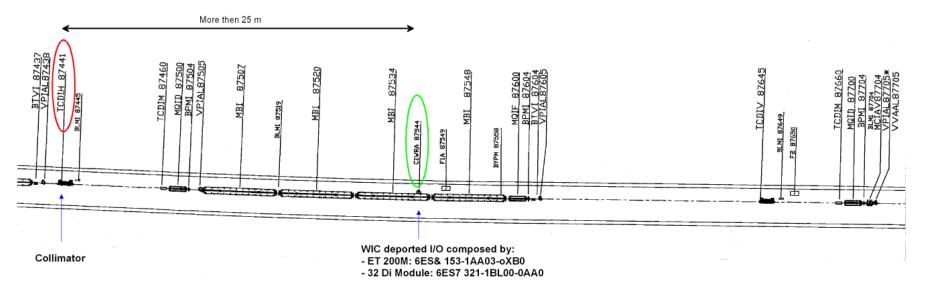

TT40

TED

TCDIH 87441: Collimator

CIWRA 87544: WIC Deported I/O: collect the magnet information from MQI 87500 to MSIA A6R8 → about **25 m** downstream from the collimator

TBSE


ECA4

11111

Situation in Ti8 tunnel

What happened before/during the incident:

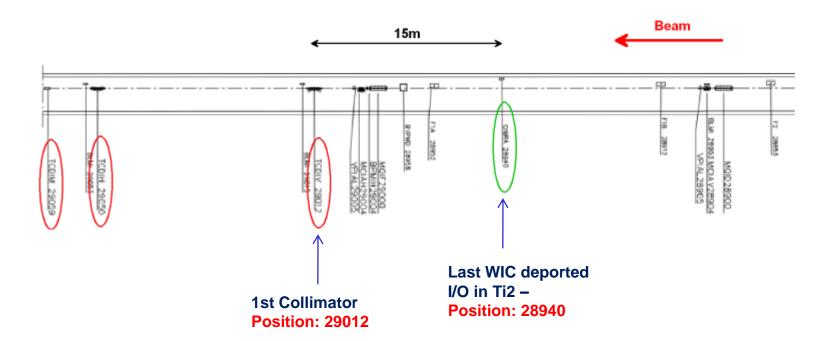
- When closing the collimator jaws, this has generated a shower of particles which (most likely) corrupted the ET 200M memory

- The remote IO module lost its Profibus address and the Power-Converters which supply the magnets connected to this crate were cut off (expected fail-safe behaviour !)

- After a reset of this crate (24V Power Supply ON/OFF – remotely) the module in question was again operational

Conclusion:

- Incident most likely linked to (accidental) particle shower generated by upstream collimator
- -The ET 200M module has reacted as foreseen (ie fail-safe switched off converters)
- Remote reset sufficient to make the system again operational
- This kind of problem was never observed during previous operation of the TL with beam, even for (higher intensity) CNGS beam in TT40
- The preliminary design of this TL (at which locations of remote IOs had to be defined) did not include collimators at this location
- Initial radiation estimates of these TL predicted (very) low doses for the remote IO locations


Possible Solutions which could help to limit future impact:

- If such collimator adjustments have to be done :
- If sufficient, add additional shielding for this remote I/O crate?
- Move the I/O crate in question 40 m upstream, but this implies a cost and an extended intervention

- Move only the inputs for the main dipole magnets to the upstream I/O crate, thus avoiding to perturb CNGS operation (less cabling, but reconfiguration and re-testing needed)

