Bus-Bar Quench Studies Summary of Available Calculations LMC Meeting August 5th 2009

J. Blanco, M. Brugger, F. Cerutti, A. Ferrari, E. Lebbos, A. Mereghetti, K. Roed, R. Schmidt, V. Vlachoudis, J. Wenninger

Input from: A. Verweij

Calculations based on the FLUKA Team IR7 Layout

The Studied Cases: Loss Source

General

- Beam-2 case assuming orbit bump at MQ locations
- Two general cases studied for various locations:
 (a) Point-like loss in the beam-screen to get peak in the downstream interconnect/empty-cryostat or magnet
 (b) assuming a distribution (equal) along the element

(2) MOStain the Empty Cryostat

 aiming to get peak energy deposition in the tothotyingyiosteacommettre enorgy stream torthogonization (totter) agoints (totter) agoints (totter) agoints (totter)

VIEW D

250urad

deflection angle

done for both energies 3TeV and 5TeV

- Energy deposition on the busbars per unit length
- Energy deposition on the lyra
- BLM particles spectra and energy deposition. -> BLM signal

The Interconnect 'Challenge' Interconnection: LE-11R / LQ-11R

Int

in scale

Busbar Quench Studies - LMC Meeting

Interconnect: FLUKA model

Linear Heat Exchanger X & Y

Busbar Quench Studies - LMC Meeting

August 5th 2009

Assumptions for Quench & Heating

MB/MQ Quench Limits (for transient case)

- 1mJ/cm³ (preliminary assumption -> update needed)
- peak energy deposition in magnet coils: cell size (r/φ/z): ~1cm / 2deg / 10cm
 The Results SCALE with these Assumptions

Busbar Quench Limits (transient)

- 10mJ/cm (preliminary assumption -> update needed)
- transversal average over
 - MQ: 160mm² (M1, M2 as shown in layout before)
 - MB: 280mm² (M3)
- in the moment peak value with:
 - ~ 1cm longitudinal average for the busbars
 - ~ peak value in the Lyra (not averaged!)
- adiabatic assumption

(Pre)Heating-up 80K

 80K: 92 J/cm for the MQ, (*c.f.*, A.Verweij) (preliminary assumption -> possible update needed) !!!

Example: Distributed Loss in MQ11

Busbar Quench Studies - LMC Meeting

Inter-Connect: Energy deposition

Interconnect located after the MQ11 (point-like loss)

Busbar Quench Studies - LMC Meeting

Inter-Connect: Energy Deposition

¹⁰

Empty Cryostat: Energy deposition

Empty Cryostat: Energy deposition

Empty Cryostat: Energy deposition

BLM Signal Empty Cryostat

Empty Cryostat Loss (Point-Like Case) 7.00E-07 80 Signal (Ideal Pos.) / μC/primary Peak in Towards the 70 6.00E-07 End of the Empty 60 **Cryostat** 5.00E-07 50 4.00E-07 current nC/prim 40 😒 Error [%] 3.00E-07 30 2.00E-07 Beam 2 20 1.00E-07 10 BLM 0.00E+00 DP81-MP4 MP4 DRBLMMA DRBLMM NB NB PSCIA NB NB BR BRON MB B2G9 WB B2G10 WE B2G15 WB B2G16 DRBLMM DRBLMM DRBLMM DRBLMME DRBLMM DRBLMINC DRBLMM NB NB NB NB NB NB NB

Position Along Beam Elements

Busbar Quench Studies - LMC Meeting

BLM Signal Empty Cryostat

Empty Cryostat Loss (Distributed Case)

Possible BLM Positions Along Beam Elements

Busbar Quench Studies - LMC Meeting

Analysis, *e.g.*, MQ11 - Point-Like Case

Beam Element	Peak E-Dep [GeV/cm3/pp] [GeV/cm/pp]	Peak E-Dep [mJ/cm3/pp] [mJ/cm/pp]	Quench Limit [mJ/cm3] [mj/cm]	#of Protons required for Quench	Peak BLM [nC/pp]	Peak BLM in case of MQ11 Quench [nC]
MQ.10R7.B1	8.04E-05	1.29E-11	1	7.77E+10	2.37E-09	0.002
MQTLI.10R7.B1	7.80E-05	1.25E-11	1	8.01E+10		
MB.A11R7.B1	4.68E-04	7.49E-11	1	1.34E+10	4.52E-09	0.003
IC3.DS10R7.B1	4.37E-05	6.99E-12	10	1.43E+12		
MB.B11R7.B1	1.26E-02	2.02E-09	1	4.96E+08	5.53E-08	0.04
IC1.DS12R7.B1	6.67E-04	1.07E-10	10	9.37E+10		
DRFT.11R7.B1 (Busbar)	1.97E-02	3.15E-09	10	3.17E+09	5.01E-06	3.4
DRFT.11R7.B1 (Lyra)	3.59E-02	5.75E-09	10	1.74E+09	5.01E-06	3.4
IC2.DRFTR7.B1	2.41E-02	3.86E-09	10	2.59E+09		
MQ.11R7.B1	9.27E+00	1.48E-06	1	6.74E+05	4.66E-07	0.3

- Magnet quenches ~3 orders of magnitudes earlier than the busbars in the adjacent inter-connect or empty cryostat
- BLM signal in the order of nC (if in the optimum position) in the case of the MQ11 quench
- Consider important uncertainties due to the loss assumptions and simulation statistics (digits are not significant) August 5th 2009
 Busbar Quench Studies - LMC Meeting

Analysis, e.g., MQ11 - Distributed Case

Beam Element	Peak E-Dep [GeV/cm3/pp] [GeV/cm/pp]	Peak E-Dep [mJ/cm3/pp] [mJ/cm/pp]	Quench Limit [mJ/cm3] [mj/cm]	#of Protons required for Quench	Peak BLM [nC/pp]	Peak BLM in case of MQ11 Quench [nC]
MQ.10R7.B1	4.55E-05	7.28E-12	1	1.37E+11	4.43E-09	0.01
MQTLI.10R7.B1	1.61E-04	2.58E-11	1	3.88E+10		
MB.A11R7.B1	7.54E-04	1.21E-10	1	8.29E+09	6.01E-09	0.02
IC3.DS10R7.B1	9.50E-05	1.52E-11	10	6.58E+11		
MB.B11R7.B1	1.07E-02	1.71E-09	1	5.85E+08	3.79E-08	0.1
IC1.DS12R7.B1	5.98E-04	9.57E-11	10	1.04E+11		
DRFT.11R7.B1 (Busbar)	1.00E-02	1.60E-09	10	6.25E+09	1.06E-06	3.4
DRFT.11R7.B1 (Lyra)	3.10E-02	4.96E-09	10	2.02E+09	1.06E-06	3.4
IC2.DRFTR7.B1	1.15E-02	1.85E-09	10	5.42E+09		
MQ.11R7.B1	1.92E+00	3.07E-07	1	3.25E+06	6.73E-07	2.2

- Magnet quenches 2-3 orders of magnitudes earlier than the busbars in the adjacent inter-connect or empty cryostat
- BLM signal in the order of nC in the case of the MQ11 qench

Number Of Protons To Quench Both

August 5th 2009

Busbar Quench Studies - LMC Meeting

Analysis Plots. MQ11. Dist. Loss

Analysis, e.g., Empty C. Point Loss

Beam Element	Peak E-Dep [GeV/cm3/pp] [GeV/cm/pp]	Peak E-Dep [mJ/cm3/pp] [mJ/cm/pp]	Quench Limit [mJ/cm3] [mj/cm]	#of Protons required for Quench	Peak BLM [nC/pp]	Peak BLM in case of DRFT Quench [nC]
MQ.10R7.B1	4.87E-05	7.78E-12	1	1.28E+11	1.95E-09	0.9
MQTLI.10R7.B1	1.40E-04	2.24E-11	1	4.47E+10		
MB.A11R7.B1	3.68E-03	5.88E-10	1	1.70E+09	1.72E-08	8.2
IC1.DS11R7.B1	2.67E-04	4.28E-11	10	2.34E+11		
IC3.DS10R7.B1	3.20E-04	5.13E-11	10	1.95E+11		
MB.B11R7.B1	6.09E-02	9.75E-09	1	1.03E+08	2.43E-07	116.4
IC1.DS12R7.B1	2.47E-03	3.95E-10	10	2.53E+10		
DRFT.11R7.B1 (Busbar)	1.30E-02	2.08E-09	10	4.81E+09		
DRFT.11R7.B1 (Lyra)	1.31E-01	2.09E-08	10	4.79E+08	6.50E-07	311.3

 Magnet quenches about at the same time as the busbars in the empty cryostat

(Note: the Lyra quench level refers to the peak value)

Analysis, *e.g.*, Empty Cryos. Dist. Loss

Beam Element	Peak E-Dep [GeV/cm3/pp] [GeV/cm/pp]	Peak E-Dep [mJ/cm3/pp] [mJ/cm/pp]	Quench Limit [mJ/cm3] [mj/cm]	#of Protons required for Quench	Peak BLM [nC/pp]	Peak BLM in case of DRFT Quench [nC]
MQ.10R7.B1	8.15E-05	1.30E-11	1	7.67E+10	4.21E-09	6.8
MQTLI.10R7.B1	2.01E-04	3.22E-11	1	3.11E+10		
MB.A11R7.B1	4.39E-03	7.02E-10	1	1.42E+09	2.95E-08	47.5
IC1.DS11R7.B1	2.45E-04	3.91E-11	10	2.56E+11		
IC3.DS10R7.B1	2.25E-04	3.61E-11	10	2.77E+11		
MB.B11R7.B1	1.32E-01	2.12E-08	1	4.73E+07	7.06E-07	1139.0
IC1.DS12R7.B1	6.44E-03	1.03E-09	10	9.71E+09		
DRFT.11R7.B1 (Busbar)	3.09E-03	4.95E-10	10	2.02E+10		
DRFT.11R7.B1 (Lyra)	3.87E-02	6.20E-09	10	1.61E+09	2.88E-07	464.2

 Adjacent magnet quenches 'only' ten times earlier than the busbars in the empty cryostat

significantly higher BLM signal (some 100nC)

(Note: the BLM signal refers to the BEST possible location, thus not necessarily the one as installed in the machine)

Number Of Protons To Quench Both

Point-like Loss in

Empty Cryostat 5TeV

Analysis Plots. Empty Cryos. Dist. Loss

Number Of Protons To Quench Both

Analysis Plots. MQ12 5TeV Dist. Loss

Quenches: Summary Table

Loss Element	Loss Scenario	Energy [TeV]	Minimum #ofProtons to quench the Magnet	Minimum #ofProtons to quench the Busbar	Multiple #ofProtons to quench the Busbar	BLM Peak Signal in case of Magnet Quench [nC]	BLM Peak Signal in case of Busbar Quench [nC]	Location of BLM Peak Signal
MQ12 Distributed	5	6.4E+05	2.8E+09	4476	2.3	10193.8	MB.C12	
	3	1.1E+06	4.4E+09	3895	2.3	8885.3	MB.C12	
	Distributed	5	3.2E+06	5.7E+09	1751	6.2	10881.2	MB.C12
	Distributed	3	5.9E+06	1.0E+10	1770	6.8	12067.5	MB.C12
MO11	Point	5	6.7E+05	1.7E+09	2579	3.4	8708.4	Empty Cryostat
WQII	Distributed	5	3.3E+06	2.0E+09	620	3.4	2136.5	Empty Cryostat
Empty	Point	5	1.0E+08	4.8E+08	5	311.3	1452.3	Empty Cryostat
Cryostat	Distributed	5	4.7E+07	1.6E+09	34	1139.0	38876.8	MB.B11

- Magnet will quench significantly earlier than adjacent busbars (in interconnects or the empty cryostat)
 - 10⁶ protons sufficient to quench the magnets
 - (10^8) 10⁹-10¹⁰ protons required to quench the busbars
 - Energy dependence between 5 and 3 TeV is about a factor of two (significantly below the uncertainties due to the loss assumptions)
- Respective BLM signal is a few nC for the magnet quench (3-1000nC)
- Loss (point-like) in the empty cryostat is considered as 'worst-case', however direct losses are very unlikely (as compared to the MQs)
 August 5th 2009
 Busbar Quench Studies - LMC Meeting

Pre-Heating to 80K

Loss Element	Loss Scenario	Energy [TeV]	Peak E-Dep [mJ/cm/pp]	Element Name	#of Protons to (pre)heat to 80K
	Doint	5	3.51E-09		2.62E+13
MQ12	Point	3	2.26E-09	ICI.AON7.DI	4.07E+13
	Distributed	5	1.76E-09	IC2.A4R7.B1	5.21E+13
		3	9.59E-10	IC1.A6R7.B1	9.60E+13
MO11	Point	5	5.75E-09		1.60E+13
MQTT	Distributed	5	4.96E-09	ICZ.DITETIT7.DI	1.86E+13
Empty	Point	5	2.09E-08	DPET 11P7 P1 (Lyra)	4.40E+12
Cryostat	Distributed	5	6.20E-09	DRFI.IIR7.DI (Lyfa)	1.48E+13

Only preliminary assumption for the required energy
 92J for 80K (*c.f.*, A.Verweij)

- 10⁸-10¹⁰ protons required to quench the busbar`
- Some 10¹²-10¹³ protons required for >80K
- Considered as less of an issue

August 5th 2009

Conclusions

- Peak values location (and loss scenario) dependent, however general conclusions possible to be drawn within the order of magnitudes (given the assumptions)
- Combined busbar and magnet quench can not be excluded
- Magnet will quench at a significantly lower level of beam loss than adjacent bus bars (in inter-connects or the empty cryostat)
 - (10⁸) 10⁶ protons sufficient to quench the magnets
 - (10^8) 10⁹-10¹⁰ protons required to quench the busbars
- Applied quench 'limits' require an iteration with the magnet experts – results scale accordingly
- Energy dependence between 5 and 3 TeV is about a factor of two
- According to the present studies it's very unlikely to quench the busbar only (not observed in these studies)
- Pre-Heating to 80K seems less of an issue, but required heat assumptions need to be clarified

Supporting Material

Problem Introduction Motivation

"Quantify the likelihood of quenching the busbar with beam."

"Verify the respective magnet quenches and levels."

"Analyse the related BLM signal and positions"

"Study the probability of rising the temperature of the busbar/Cu over 80K before discharging."

The 'Problem'

Sufficiently 'realistic' representation of the geometrical situation

Proper implementation in the DS/ARC layout

What loss scenario to be condisered

Link between loss scenario, energy deposition (quench) and BLM signal

- simulation layout follows same layout as damage studies proposed before/after Chamonix 2009 (see <u>V. Kain et al.</u>)

August 5th 2009

Busbar Quench Studies - LMC Meeting

The Required (New) Ingredients

Geometry

- FLUKA model of the empty cryostat
- FLUKA model (different lengths) of the interconnects
- BLM 'dummy' regions along magnets

Technical

- Routine allowing for arbitrary losses in beam elements of the DS/ARC
- BLM particle energy spectra scoring as a function of 'Lattice'
- Special LYRA scoring following U-shape and allowing to get only the contribution of the sensitive volume
- Check for particles leaving the area (possible use for post-tracking studies)
- Longitudinal scoring along bus-bars, as well as 3D scoring for visualization

Loss Assumption

 Different cases studied for various loss locations (MQ12/11/Empty Cryostat) and in some cases also different energies

Quench Levels & Preheating: Values and Conditions

- Normalization assumptions
- Quench conditions to be studied (transient,...)

Geometry Models: Empty Cryostat

R469

R457

1:2

Details Included

- Lyras (complex implementation through angles,...)
- Radiation shield (Pb)
- Beam screens/pipes
- Central part (He/Steel)
- Continuous horizontal BLM

Busbar Quench Studies - LMC Meeting Detail B

Different Locations (distributed loss)

Busbar Quench Studies - LMC Meeting

Z / cm

Number Of Protons To Quench Both

Analysis Plots. Empty Cryos. Point Loss

Analysis Plots. MQ11 Point Loss

Ana

SS