CMS Permits

Richard Hall-Wilton (CERN / Wisconsin)

On Behalf of CMS

LHC Machine Protection Panel Friday 18th September 2009

BEAM_PERMIT

- Purpose:
 - Protect CMS when "fast" beam losses are high enough that CMS detector is in danger of immediate damage
 - Protect CMS from "slower" beam losses which might, if continued, reduce sub-detector lifetime significantly
 - A veto in the event of CMS not being in a safe state for beam operation
- CMS uses 3 CIBU units
 - Magnet
 - Crash Button in CMS Control Room (borrowed from TOTEM detector input for 09/10 run)
 - Beam Condition Monitors
- Logic takes input from following sources:
 - Magnet (however just continually asserts PERMIT at the moment, no logic involved)
 - CMS wishes to demonstrate quickly that the operation of the CMS solenoid has no effect on beam operation and thus that this input is not needed
 - Crash Button in CMS Control Room
 - Usage scenarios: Hard "off" for shutdowns/access days, "emergencies"
 - Beam Condition Monitors
 - ABORT can be triggered by high "fast" losses, high "slow" losses and BCM hardware failure
 - See following slides
- BEAM_PERMIT was commissioned last year before beam
 - Recommissioning should be quick
 - Will start once cooling is back at CMS (next week)

ABORT Thresholds

- Active Detectors:
 - Initially only 8 diamonds (4 per end) in inner ring on BCM2 will be "active" in asserting BEAM_PERMIT
 - BCM1L hardware will be connected to the ABORT from the beginning, however thresholds will NOT be set until after a suitable commissioning period with beam
 - BCM1L detectors and inner ring of BCM2 are at ca. 4.5cm radius, approximately the same as innermost layer of pixel detector
 - Thresholds are per diamond. No coincidence required
 - Reminder:
 - BCM2 is strictly a "BLM", except a diamond is attached as detector. All FE and BE readout BLM standard
 - BCM1L uses BLM readout architecture
- Obviously all levels will be continually reviewed as experience of beam conditions is gained
- "Fast" threshold: (previously presented)
 - Designed to protect against large fast losses that might overload FE electronics in CMS sub-detectors
 - Damage scenario envisaged by tracker / pixels is ca. 10⁹ particles per accident per cm² in a few bunch crossings
 - Number taken from testbeams done by tracker and pixels and from experience from CDF tracker
 - Set a large safety factor here of 10³ meaning look for single losses of ca. 10⁶ particles
 - Signal response in the diamond detector is:
 - 1.5 10⁻¹⁵ A for 1 MIP/s
 - Assume 36 e/h pairs per um and 250 um CCD
 - Integration time of BCM2 is 40 us, so this corresponds to 18.75 uA
 - Initial threshold set to 10 uA in RS1 = 40 us time bins
 - Integration time of BCM1L is 5 us, so this corresponds to 150 uA
 - Threshold to be set to 60 uA in RS1 = 5 us time bins (to be activated later)
- "Slow" threshold (>1s): (new)
 - Designed to protect against large losses which continue for a considerable period of time potentially eating into sub-detector lifetime radiation budget
 - A "large" integration time (>s) will be used here.
 - Take a value as 3 times "nominal" luminosity as the threshold level ("nominal" L = 2 x 10³⁴)
 - This corresponds to losses of ca. 3 x 10⁸ MIPs s⁻¹ cm⁻² at a radius of 5cm (300 nA currents in BCM2/BCM1L)

INJECTION_PERMIT

- Purpose:
 - Signal whether CMS is in a safe state for injection to proceed
 - Hold off re-injection until post-mortem analysis from previous dump is understood
 - (Possibly) In the event of bad injection to hold off further injection until it is understood without dumping beam
 - Will not be activated unless need is shown
- CMS uses 2 CIBFU units
 - Beam 1 and Beam 2
 - Input into CIBFU is identical
- Logic takes input from following sources:
 - CRASH Button in Control Room
 - CMS State given by DCS
 - CMS_ON means INJECTION_PERMIT=FALSE
 - CMS_STANDBY means INJECTION_PERMIT=TRUE
 - State predominantly determined by tracker and pixels HV
 - Hardware input giving voltage state of tracker and pixels (foreseen, not initially active)
 - HV_ON for either pixels or tracker drops the INJECTION_PERMIT
- System able to take an input from the Beam Conditions Monitors, but not used in initial logic
 - Will decide at a later stage whether to enable inputs based upon experience of the beam
- After a dump, will manually hold-off INJECTION_PERMIT until post-mortem analysis understood (i.e. dump was clean, or losses understood)
 - For all dumps, not just those initiated by CMS
- INJECTION_PERMIT was commissioned last year before beam
 - Recommissioning should be quick
 - Will start once cooling is back at CMS (next week)

Summary

- Initial usage of BEAM_PERMIT and INJECTION_PERMIT by CMS given here
- To be recommissioned next week
 - Will be relatively stable after that point (ie PERMIT will typically be asserted), however there will be occasional expert intervention
 - At what date should they be considered "live"?
- TOTEM inputs not addressed here (though they have their own inputs at Pt 5)