Miscellaneous

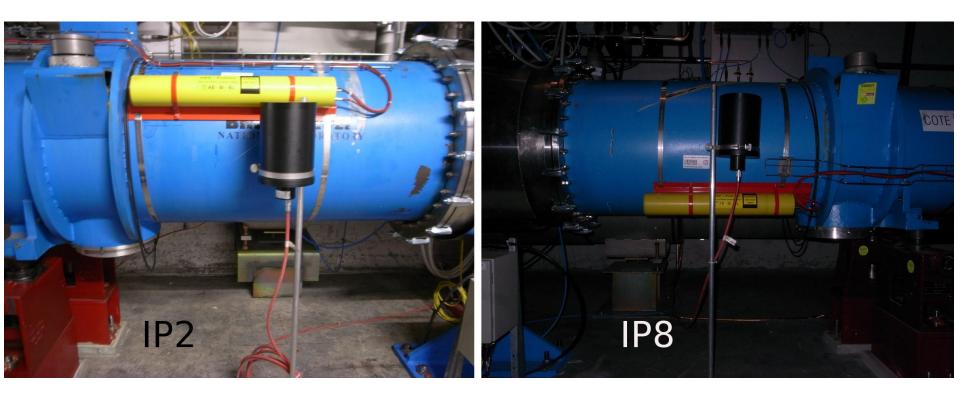
- □ VELO position limits : next week.
- □ SMP : next week.
- □ Squeeze factor (SMP++):
 - S. Redaelli identified quadrupole pairs (one pair/IR) that can be used to deduce b* from the ratio of the currents (b* 10 m to 0.5 m). To be checked for b* = 90 m, etc
- Power cut tests.
 - Review the status of power cut tests in near future.

SIS

□ New injection interlock on the QPS_OK signal.

- Used as startup interlock in the PIC. In case of a quench heater problem, QPS_OK switches to FALSE but the PC is not stopped.
- SIS will inhibit injection if there is any QPS_OK = FALSE (13 kA, IPQ, IPD, IT).
- □ New injection interlock on the RF TDCs.
 - Injection inhibit if the RF synchronization is not correct.
- □ IT girders motors interlock.
 - Beam dump if motors are switched on.

Over-injection – BLM team (1)


Summary of a presentation by M. Sapinski (added to today's presentations).

 'Beam1' monitor for Q3/triplet protection installed on D1 systematically triggering when a pilot is send to the TDI.

Over-injection (2)

- □ Tests indicate that the losses come from the outside of the cryostat.
- Inspection of the BLM installation in the tunnel revealed that in LSS2 the BLM was installed ~20 cm above the beam line, while in LSS8 it was installed below the beam line (because of a RAMSES monitor).
 - LSS8 monitor moved to same position than LSS22 monitor.
 - There are also other local differences (walls, gates ...).

Over-injection (3)

- A new threshold table will be prepared for the triplet BLM in case the problem is still present in 2010 (after moving the monitor).
- □ Saturation of the two TDI BLMs (IC):
 - The dynamic range of one monitor will be increased by a factor 100 (pulse stretching).
 - The other monitor will not be touched (for fast loss measurements).
- □ Large backgrounds in ALICE during over-injection?

Collimation BLMs

- □ The IC BLMs on the <u>TCP</u>s are likely candidates for saturation well below the damage level (factor … 1000!).
 - Ongoing discussions on increasing the dynamic with additional monitors, pulsing stretching of existing monitors etc. No yet converging.
 - This also has implication for protection of the collimators, as we always analyzed the failures by considering (fast) damage to the collimators. Probably covered by the TCS – but watch out!

LHCf

- SIS injection interlock from LHCf will become un-maskable (at restart with beam).
 - $_{\circ}~$ Issues in 2009 were related to the DIP \Leftrightarrow CMW servers.
 - Clear server restart instructions (to be done!) should largely improve the situation.
 - Would we fill the LHC if the DIP communication is down???

Wire scan limits

□ From M. Sapinski (CERN-AB-2008-030 BI for damage limits):

- Wire speed 1 m/s.
- Q5 is the magnet that is most exposed for quench.
- Damage limits are more "solid" than (older) Geant4 quench simulation.

E (GeV)	Quench limit	Damage limit	
450	No limit	~25% of nominal	
7000	~0.3-2.2% of nominal :1-7E12 p	~6% of nominal	

- Performing wire scans at 3.5 TeV in the first phases (with a few pilots...) should be no problem at all (more margin wrt quench...factor 5 or more)
 - Observe BLMs during scans and check predictions.

Energy tracking (BETS) MKE/MKI

Proposal for changes (reduction of tolerances).

□ SPS extraction :

- adapt E to new LHC matching, tolerance < dp/p aperture TI2/8
- SPS reference energy matched to LHC is 451.25 GeV.

Kicker	E limit 2009 (GeV)	E limit 2010 (GeV)	V limit 2009 (kv)	V limit 2010 (kv)
MKE4 (B2)	451 ± 1.5	451.25 ± 1.2	51.2 ± 2	51.2 ± 1?
MKE6 (B1)	451 ± 1.5	451.25 ± 1.2	33.1 ± 2	33.1 ± 1?
MKI2	450 ± 5	$450 \pm \textbf{1}$	49.6 ± 1	49.6 ± 1
MKI8	450 ± 5	$450 \pm \textbf{1}$	51.3 ± 3.5	51.3 ± ?

□ We could consider reducing the tolerance some of the kick voltages.

 So far we never trimmed at extraction from the SPS... but the errors are acceptable (~ 30 µrad max).

Evian, Chamonix & Co - MPP / JW

Test documentation

Very poor record	of filling	in the	MPS te
tracking pages.			

Only PIC, FMCM and SIS tests are sys

- Collimators not filled, but very nice presentation @ Evian).
- Everyone should analyze what tests net considered to be commissioned (from ¹¹/₂₂)

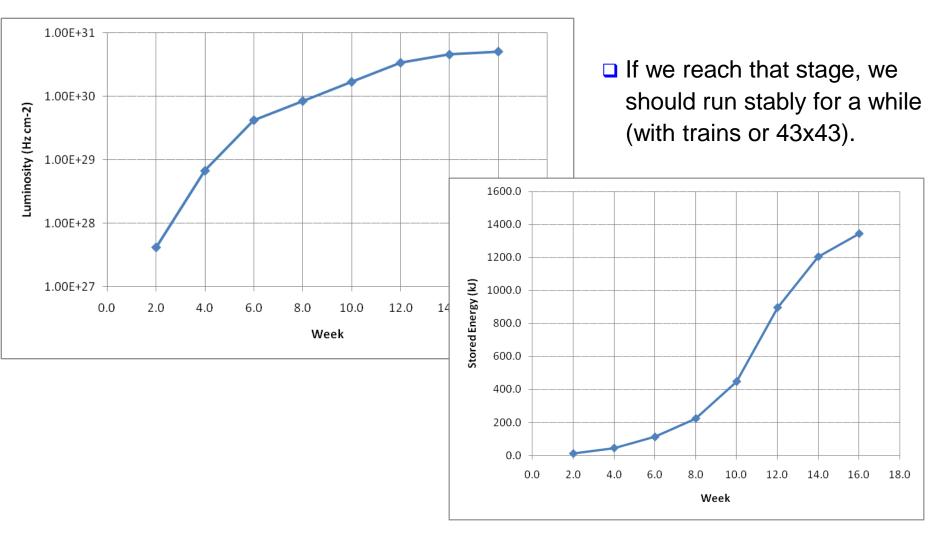
Please reset the data on the MPS test

- In 2010 the test results must be filled f
- □ We should make a list of MPS tests to instead of programmed beam dump →
 - With good instructions they can be do

\diamond	A	B
1	Collimator	MPP test resutls: EDMS Doc. No.
2		
3	TCDIH-29012	https://edms.cern.ch/document/1052530/1
3	TCDIH-29050	https://edms.cern.ch/document/1052525/1
5	TCDIH-29205	https://edms.cern.ch/document/1052526/1
6	TCDIH-29465	https://edms.cern.ch/document/1052522/1
7	TCDIH-87441	https://edms.cern.ch/document/1052527/1
8	TCDIH-87904	https://edms.cern.ch/document/1052528/1
9 10	TCDIH-88121	https://edms.cern.ch/document/1052529/1
10	TCDIV-29012	https://edms.cern.ch/document/1052675/1
11	TCDIV-29234	https://edms.cern.ch/document/1052531/1
12	TCDIV-29509	https://edms.cern.ch/document/1052532/1
13	TCDIV-87645	https://edms.cern.ch/document/1052533/1
14	TCDIV-87804	https://edms.cern.ch/document/1052535/1
15	TCDIV-88123	https://edms.cern.ch/document/1052536/1
16	TCL-5L1-B2	https://edms.cern.ch/document/1052537/1
17	TCL-5L5-B2	https://edms.cern.ch/document/1052539/1
18	TCL-5R1-B1	https://edms.cern.ch/document/1052540/1
19	TCL-5R5-B1	https://edms.cern.ch/document/1052541/1
20	TCLA-6L3-B2	https://edms.cern.ch/document/1052542/1
21	TCLA-6R3-B1	https://edms.cern.ch/document/1052543/1
22	TCLA-7L3-B2	https://edms.cern.ch/document/1052544/1
23	TCLA-7R3-B1	https://edms.cern.ch/document/1052546/1
23	TCLA-A5L3-B2	https://edms.cern.ch/document/1052547/1
25	TCLA-A5R3-B1	https://edms.cern.ch/document/1052548/1
26	TCLA-A6L7-B2	https://edms.cern.ch/document/1052549/1
20	TCLA-A6R7-B1	https://edms.cern.ch/document/1052550/1
28	TCLA-A7L7-B2	https://edms.cern.ch/document/1052551/1
29	TCLA-A7R7-B1	https://edms.cern.ch/document/1052552/1
30	TCLA-B5L3-B2	https://edms.cern.ch/document/1052554/1
31	TCLA-B5R3-B1	https://edms.cern.ch/document/1052555/1
32	TCLA-B6L7-B2	https://edms.cern.ch/document/1052556/1
32	TCLA-B6R7-B1	https://edms.cern.ch/document/1052557/1
34	TCLA-C6L7-B2	https://edms.cern.ch/document/1052558/1
35	TCLA-C6R7-B1	https://edms.cern.ch/document/1052559/1
36	TCLA-D6L7-B2	https://edms.cern.ch/document/1052560/1
37	TCLA-D6R7-B1	https://edms.cern.ch/document/1052561/1
38	TCLIA-4L8	https://edms.cern.ch/document/1052562/1
39	TCLIA-4R2	https://edms.cern.ch/document/1052563/1
40	TCLIB-6L8-B2	https://edms.cern.ch/document/1052564/1

Increasing Intensity in 2010 (1)

□ Aim for intensity steps limited to factor ~2 (except vey beginning!).


- Only up to ~40 bunches. Already a long way.
- Arbitrary choice of max bunch intensity of 5E10.
- □ Use flexibility of train generation for 50 ns beams by groups of 6 bunches (1 PSB bunches → 6 SPS bunches).
 - CPS can a priori deliver batches of n×6 (6,12,18,24,30,36), n = 1-6.
 - Very nice for staging intensity (and inventing lot's of filling schemes !).
- Injection based on progression.
 - Single bunch up to 5E10.
 - $_{\circ}~$ 4 bunches up to 5E10.
 - 6 bunches up to 5E10 (50 ns train). Injection of 3E11 still significantly below SBF limit at injection.
 - Then 12 bunches etc..
- □ Of course there are many alternate routes...

Increasing Intensity in 2010 (2)

Stage	lb	Nb	Stored E (kJ)	Stored E step	Peak L (Hz cm-2)	Comment
Startup	5E+09	4	11.2	-	4.2E+27	
Single b inj, Stage 1	2E+10	4	44.8	4.0	6.8E+28	≈ 3x SBF limit 3.5 TeV
Single b inj, Stage 2	5E+10	4	112.0	2.5	4.2E+29	
Single b inj, Stage 3	5E+10	8	224.0	2.0	8.5E+29	
Four b inj, Stage 1	5E+10	16	448.0	2.0	1.7E+30	SBF limit 450 GeV
Four b inj, Stage 2	5E+10	32	896.0	2.0	3.4E+30	
Standard 43x43	5E+10	43	1204.0	1.3	4.6E+30	
Short trains	5E+10	48	1344.0	1.1	5.1E+30	8 trains of 6 OR 4 trains of 12

Increasing Intensity in 2010 (3)

□ Just assume 2 (good) weeks per step (MDs not included)... arbitrary choice!

Evian, Chamonix & Co - MPP / JW