BLM proposed system changes Primary Collimators, Triplet, TDI

E.B. Holzer for the BLM team MPP 4. Feb. 2010

Highest threshold cold magnets: OK (as defined in functional spec)

- Problem reduces with higher energies
- TCP IP3: worst case TCSG and TCLI: 10 times lower thresholds
 → capacitor (up to factor 100)
- Similar for warm magnets
 → most locations should need no changes
- possible limitation? \rightarrow see next slides

TCP in IR7 – Andres Gomez Alonso

Illustration 4: BLM thresholds on TCP collimator in IR7 expressed in dose, as a function of signal integration time. A dose of 10⁻¹² Gy per impinging proton is used.

TCP in IR7 – Andres Gomez Alonso

Illustration 1: Number of lost protons integrated from the beginning of the failure normalized to total number of circulating protons before the failure [4].

Resistor-Capacitor Delay

Experience:

- LHC dump lines
- HERA and various IC response tests (thesis M. Stockner)
- Some of the SPS LHC collimator tests (thesis
 D. Kramer and T.
 Bohlen)

<u>System A</u> 1.3e13 p⁺ dumped on collimator, Left Jaw at -5 mm, Right Jaw out

PostMortem Card 1 20071112 07:56:18

18.2.2008

BLMI Space charge effect estimation ("signal saturation")

TCP in IP7

 Signal collected within 640µs

 IC on last collimator and IC 1.5-2m
 afterwards (no element in between) show same signal

TCP in IP3

 Signal collected within 640µs

IC on last collimator and IC 1.5-2m afterwards (no element in between) show very similar signal

TCP Thresholds

- Add a capacitor and a resistor to the readout chain of all 8 TCP ICs
 - Reduce the peak signal by a factor of 175
 - Increase length of the signal by $175 \rightarrow$ signal collected within 112ms
 - For 1.3s integration time (logged every 1s) \rightarrow practically no difference
- Increase the upper end of the dynamic range by a factor of 175
- The thresholds will have to be recalculated and redeployed
- 40µs 450 GeV threshold values:

ТСР	Theoretical threshold [Gy/s]	Old thres. [Gy/s]	New thresh. [Gy/s]
IP3	~40'000	23	4'025
IP7	~2'000 (correction for ultrafast losses due to RD1.LR1 failure	23	4'025

Triplett at over-injection

Tests in December 2009 to investigate the overinjection

Observation: signals in BLMs on beam 1 systematically higher than on beam 2 while beam 2 injected – because of triplet symmetry they are expected to be the same

- overinjection, TDI open
- injection on closed TDI, kicker off
- in addition closed TCTV

Observation: signals do not change

Conclusion:

 signal in the BLMs comes from shower outside the cryostat

Inspection of IP2 and IP8

- Inspection: January 26th, 2010, with Laurette Ponce
- Next day monitor in IP8 has been moved up
- There is no guarantee that this solves the problem
- Data from Ramses monitors will probably not help to analyze the problem

Overinjection: proposed solution

- Test overinjection and see if the monitor goes over threshold after change of its position
- If yes than load new thresholds to this monitors (this one is factor 3 below the expected quench level) – short term solution
- Long term solution: shield (simulation needed!)

TDI (Saturation)

- Same as at TCP: install capacitor + resistor to slow down the signal and measure higher instantaneous losses. Factor: between 10 and 175?
- Integration over a longer time: averaging out fluctuations
- Daniel Kramer found that integration times of about 1ms gave the best signal to noise ratio with LHC set-up in SPS.

Additional Slides

Chicane in IP8

- Why signals in IP8 at the beginning of triplet are 2 orders of magnitude smaller than in IP2?
- There is a chicane in IP8 not present in IP2 (why?)
- This proves (again) that signals in the BLMs come from outside the cryostat

<u>System A</u> 1.3e13 p⁺ injection plateau, Left Jaw at 10mm, Right Jaw out, Dump @ 1.2s

Beam dump on Closed Jaws SEM to BLMI comparison 1.3 10¹³p⁺

Black line – signal not clipped $5^*\tau$ filter = 350ms

D.Kramer

