Corrector Orbit Dipoles (CODs) Analysis

Georgios Kourkafas technical student TE-MPE-PE

under the supervision of M Koratzinos and the guidance of R Schmidt 16/07/10

Trip of orbit corrector magnets and effects on the beam

Outline

- Checked two cases where a corrector tripped
	- 1) MCBV.12L4.B1 at fill: #1034
	- 2) MCBV.17L1.B1 at fill: #1035
- We have looked at the current of the correctors, calculated the resulting kick and estimated the losses that such a kick produces using a simple model.

•60A superconducting

- •Time constant: 55s (indicated 99s /130s)
- •Nominal magnetic field: 2.93T
- •Length: 0.647m
- Kourkafas Georgios 3 •Operating temperature: 1.9K

Corrector MCBV.12L4.B1

- Time and date of event: 12/4 at 9:14
- ⚫ Operating current : 5.37A
- Magnet kick: 16.6 µrad
- ⚫ Intensity falls 10% losses indicated by the BLMs in point 7.

Data during loss

Corrector current with scaled BLM signals (first losses observed at 3.5A)

BLM signals in IP7 (maximum losses at: 0.56A)

Data during loss

Temperature around IP7 remains unchanged

Vertical orbit RMS increases to 0.9mm

Beam at collimators

⚫ Calculated emittance from wire scanning: ϵ =e*/(βγ)=3.18E-10m (1.5h before event)

• Optics set to collision

$$
\Delta x_{co}(s) = \frac{\sqrt{\beta(s)}}{2\sin \pi Q} \sum_{i} \theta_{i} \sqrt{\beta(s_{i})} \cos (\Psi(s) - \Psi(s_{i}) + \pi Q)
$$

Event progression

Progression with 20% increased emittance

Progression with an σ/3 offset

Logged intensity vs. calculated intensity from BLM losses

Corrector MCBV.17L1.B1

- Time and date of event: 13/4 at 9:33
- ⚫ Operating current : 3.94A
- Magnet kick: 12.2 µrad
- ⚫ Intensity remains unchanged no losses detected

Beam at collimators

• Calculated emittance from wire scanning: ε=e*/(βγ)=5.3Ε-10m (2h before event)

• Optics set to collision

Event progression

Distribution of MCB operating current during fill

Conclusions

- Trips of MCB correctors, operated at expected currents, can potentially cause significant losses in the intensity.
- We have analyzed two cases and have found good agreement between what is observed and what we would expect from a simple calculation of losses.

Orbit corrector analysis in the cycle

Motivation

- An unnecessary (and undetected) closed bump in the machine is potentially dangerous.
- Understand how the CODs behave during the different phases of the cycle of the machine.
- How reproducible is the corrector currents from fill to fill?
- Is there a way to find abnormal COD values (for example, a forgotten closed bump/a misbehaving BPM) by comparing the COD currents between different fills?
- Ultimate goal: Can a (software) interlock be devised to guard against unwanted closed bumps?

INJECTION ANALYSIS

(4 fills between 13/6 - 17/6)

Injection features

Timeseries Chart between 2010-06-14 18:27:02 and 2010-06-14 21:15:18 (LOCAL TIME) .
YMBB UA23 RCBXH1L2:IMEAS → RPMBB UA23 RCBXH2 L2:IMEAS → RPMBB UA23 RCBXH3L2:IMEAS → RPMBB UA23 RCBXV1.L2:IMEAS → RPMBB UA23 RCBXV2.L2:IMEAS → RPMBB UA23 RCBXV3L2:IMEAS → RPMBB UA27 RCBXH1 R2:IMEAS → RPMBB UA27 RCBXH2 R2 RPMBB.UA27.RCBXH3.R2:IMEAS -- RPMBB.UA27.RCBXV1.R2:IMEAS -- RPMBB.UA27.RCBXV2.R2:IMEAS -- RPMBB.UA27.RCBXV3.R2:IMEAS .
RPMBB.UA83.RCBXH1.L8:IMEAS — RPMBB.UA83.RCBXH2.L8:IMEAS — RPMBB.UA83.RCBXH3.L8:IMEAS — RPMBB.UA83.RCBXV1.L8:IMEAS RPMBB.UA83.RCBXV2.L8:I_MEAS -- RPMBB.UA83.RCBXV3.L8:I_MEAS NO. Hor 14-Jun-2010 20h 14Jun-2010 21h

Normally CODs remain constant during injection

ENERGY RAMP ANALYSIS

(4 fills between 13/6 - 17/6)

CODs during ramp

SQUEEZE ANALYSIS

(5 fills between 26/4 - 19/5)

COD current vs. Quad current for 5 fills

 -1.00

STABLE BEAMS ANALYSIS

(11 fills between 24/6 – 5/7)

Analysis

- We look at data from all CODs (1061) during stable beams mode
- During a fill there is normally no significant change. We have looked at different times during a fill, especially after an intensity drop.
- We then calculate the kick variation during different fills.
- 11 recent fills have been analyzed (fills 1179 1199)

Largest – smallest kick (11 fills) of all CODs during stable beams

Kick difference in respect to position - grouped by plane/beam

1.40E-05 1.20E-05 Difference in Kick (rad) **Difference in Kick (rad)** 1.00E-05 8.00E-06 \bullet 6.00E-06 4.00E-06 2.00E-06 0.00E+00 0 5000 10000 15000 20000 25000 30000 **Position (m)**

H1 CODs

V2 CODs

Progression

Seems to be a bump that has been taken out

Case study for Closed Bump

Orbit simulation of the case

Simulation of the closed bump using intermediate magnet

Orbit logged from BPMs

Conclusions

- We have noted typical COD behavior during the different phases of the cycle.
- A close observation and analysis of the CODs can reveal abnormal behavior and maybe detect potentially unsafe operation.
- Possible development: a tool that indicates and warns on potential problems.

The end

Thanks for you attention

EXTRA SLIDES

SQUEEZE ANALYSIS

(5 fills between 26/4 - 19/5)

Quad current during squeeze

RQ7.R1B2 \longrightarrow Reference quad (monotonic)

Quad current same in every fill (RQ4-RQ8)

Squeezing steps (β* in m): $11 - 9 - 7 - 5 - 3.5 - 2.5 - 2$

COD current during squeeze

Reference COD's

MCBCV7.R1B2

MCBYHS4.L1B2

COD statistics during squeeze

MCBC Kick MCBY Kick

MAX

MAX

COD current vs. Quad current

MCBCV7.R1B2 MCBYHS4.L1B2

For 5 different fills

ENERGY RAMP ANALYSIS

(4 fills between 13/6 - 17/6)

COD current during ramp

Example COD's

MCBCH5.R1B1

0.00

5.00

10.00

15.00

COD Current (A)

COD Current (A)

20.00

25.00

30.00

MCBX magnets

MCBXV1.L1

MCBXH3.R1

Kick of MCBX magnets during ramp as a function of dipole current

MCBY magnets

MCBYV4.R1B1

Kick of MCBY magnets during ramp as a function of dipole current

MCBC magnets

MCBCH8.R1B2

MCBCV10.R1B1

Kick of MCBC magnets during ramp as a function of dipole current

Formula of the kick of an orbit corrector

$$
\theta = 2 \cdot \sin^{-1} \left(\frac{L}{2\rho} \right)
$$

where:
\n
$$
\rho = \frac{p}{B \cdot e} = \frac{E \cdot \beta}{c \cdot B \cdot e}
$$
\n: bending radius

E : current energy
B: magnetic field (propotional to magnet current)
L : magnet length

Calculated displacement for worst case scenario (b=200, cos=1)

MCBCV7.R1B2

- 0.98 mm
- 3.26 sigma

MCBYHS4.L1B2

- 2.12 mm
- 7.68 sigma

[Difference due to large beta in this magnets (3 times higher)]