
BLM Events

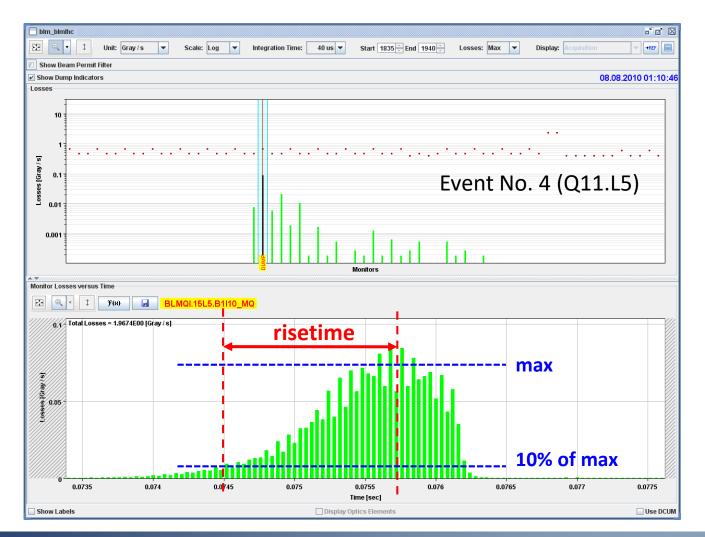
- The BLM dump events in cold regions score is now at 7.
- Event No. 5 came synchronously with a vertical roman pot movement (on B1).

RP event loss map

03.09.2010 - MPP - J. Wenninger

- The RP positions (25/20 σ H/V) had been validated previously with standard loss maps (1 bunch).
- The effect of the RP was checked on a subsequent end of fill:
 - RP was slowly moved towards its 20σ position no problem.
 - The RP was moved back and forth between out and 20σ no problem.
 - A vertical orbit bump of 1σ (0.5 mm) was trimmed in in steps in 0.2 σ to exclude any orbit difference no problem.
- Since then the RPs were inserted a few times for data-taking without problems.
- It seems that the event was triggered by something that came with the RP. This is the event that seems to point most clearly in the direction of 'dust' particles.

Event characterization


• Event parameters:

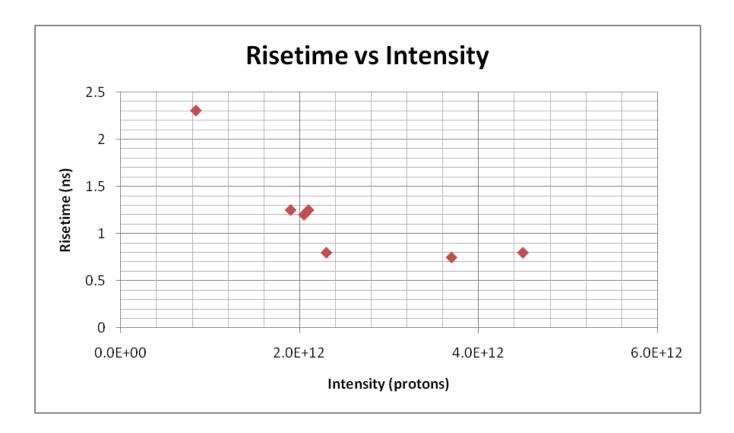
- Longitudinal position
- Beam
- Plane : focusing plane of the nearest quadrupole
- Signal maximum (RS01) and risetime (see next slide). Maximum signal from ≈highest loss signal near dump BLM.
- Intensity
- Length in stable beams

Risetime

 risetime: defined as time from 10% of max signal to max signal for RS01 (40 us).

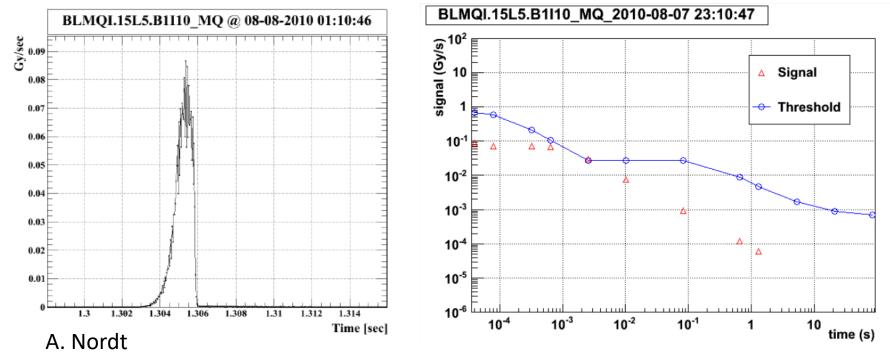
Event parameters

s : longitudinal coordinate (0 = atlas) plane : focussing plane of the nearest quadrupole beta : betatron function of the focusing plane risetime : time from 10% of peak loss to peak loss in RS01 intensity : no. protons at time of dump length : fill length in stable beams before dump


Date	Location	S (m)	Sector	Beam	Plane	Beta (m)	Max RS01 (G/s)	Risetime (ms)	Fill	No bunches	Intensity	Length (h)
07-07-2010 20:22:19	MBB.8L7**	21380	67	2	V	120	0.08	2.3	120x	9	8.4E+11	0
30-07-2010 07:26:38	Q4.R5	15160	56	2	н	274	0.08	1.25	1253	25	1.9E+12	13.15
07-08-2010 02:14:38	Q11.L4	11224	34	1	н	179	0.09	1.2	1264	25	2.1E+12	0.53
08-08-2010 01:10:46	Q15.L5	14342	45	1	v	184	0.07	1.25	1266	25	2.1E+12	1.97
14-08-2010 19:13:36	Q6.R5*	15222	56	1	v	211	0.092	0.8	1284	25	2.3E+12	3.48
23-08-2010 13:50:28	Q22.R3	9354	34	2	н	180	0.082	0.75	1298	48	3.7E+12	12.97
26-08-2010 17:25:56	Q25.R5	16179	56	1	н	180	0.125	0.8	1303	48	4.5E+12	13.08

*Roman pot event

** 5 pre-cursors / in squeeze



• Trend for risetime to decrease with intensity...

- The peak losses are very similar from event to event.
- In some cases the max. loss as recorded by 40 us RS had already passed when the beam was dumped on the integrated loss over 0.6 or 2.4 ms (RS4/5).
 - Some events may not have been noticed (as dumps) with BLM thresholds a factor 1.5 or 2 higher !

- Raising the thresholds by a factor 2 could potentially avoid dumps without quenching.
 - Work ongoing to re-analyse underlying models for thresholds. Expect the thresholds to increase !
- But for the moment proposal is to keep the thresholds as they are in order to collect more events – it is very likely there will be more!
- Benchmarking with wire-scanner:
 - Essentially the same time scale (~2 ms) of loss.
 - Well defined 'dust-like' source (30 um C wire at 1 m/s).
 - Probe the quench limit for ms-scale losses.