Simulations of ion beam losses

Roderik Bruce,

R.W. Assmann, collimation team, J.M. Jowett,

S. Gilardoni, V. Vlachoudis

Outline

- Introduction: difference between ion and proton beam losses
- Short qualitative description of most important physical processes involved
- Simulations of ion beam losses (worst cases selected)
 - particle beam hitting generic target
 - Particle beam with grazing incidence in LHC main dipole
 - Hits on collimator caused by erroneous trigger of dump kicker (V. Vlachoudis)
- Conclusion

Introduction

- Question: what setup beam limit can be used for Pb ions?
- Resulting question: What is the ratio of peak energy deposition in a target between Pb ion and protons?

Physics process	р	р	$^{208}{\rm Pb}^{+}$	$^{208}{\rm Pb}^{+}$
	injection	collision	injection	collision
Ionisation energy loss $\frac{dE}{E dx}$	0.12 %/m	0.0088 %/m	9.57 %/m	0.73 %/m
Multiple scattering	$73.5\mu { m rad}/{ m m}^{1/2}$	$4.72\mu { m rad}/{ m m}^{1/2}$	$73.5\mu{ m rad}/{ m m}^{1/2}$	$4.72\mu { m rad}/{ m m}^{1/2}$
projected RMS angle	We migh	t naively fear a	factor 82 high	er energy
Election capture lengui	depositio	n per beam cu	rrent from Pb i	ons!
Electron stripping length	-	-	0.028 cm	0.018 cm
ECPP interaction length	-	-	24.5 cm	0.63 cm
Nuclear interaction length (incl. fragmentation)	38.1 cm	38.1 cm	2.5 cm	2.2 cm
Electromagnetic dissociation length	-	-	33.0	19.0 cm

LHC design report, ch 21

R. Bruce, 1/10/2010

Simulations of ion and proton beam losses

- All relevant ion-matter interactions implemented in FLUKA
- Simple case: beams of Pb ions and protons hitting homogenous target at straight angle

R. Bruce, 1/10/2010

FLUKA simulation of Cu target

- Gaussian beam with 40 micron sigma hitting Cu target at straight angle
- Three different particle species simulated: Pb⁸²⁺, Ge³²⁺ and p⁺, all at 2.76 TeV/nucleon
- Sharp peak for ions near the entry point
- Second peak after some 20 cm
 energy deposition from Pb roughly
 - from Pb roughly factor 4 higher than energy deposition from protons

LHC Collimation

Project

CERN

Energy deposition in target

• Ionization energy loss

• Scales with Z², approximately described by Bethe-Bloch formula:

$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \log \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} \right]$$

- Corrections needed at high energy. There pair production and bremsstrahlung become important
- creates many soft electrons, which makes the final energy deposition close to the point of creation => very localized energy deposition around the trace of incident particle
- nuclear inelastic interactions (hadronic shower)
 - Causes electromagnetic shower through decays of pi0
 - Exponential increase in number of created particles
 - Final energy deposition to large part done by large number of EM patricles
 - Scales roughly with total energy of incident particles
 - Ions can be approximated as independent nucleons

R. Bruce, 1/10/2010

Energy deposition in target

- Electromagnetic dissociation
 - Fragmentation of ions caused by strong EM fields between incident ion and target nuclei
- As the ion breaks up into smaller fragments through nuclear inelastic interactions and electromagnetic dissociation, energy deposition from ionization becomes less important
- Hadronic shower needs some distance to develop
- Once the ion is fully fragmented, showers and energy deposition as for independent nucleons
- Narrow first peak from ionization
- Wide second peak from shower

Carbon target

- Comparison of 2.76 A TeV Pb ions and 7 TeV protons
- Gaussian beam, sigma
 286 microns (roughly size at horizontal TCP at top energy)
- Central bin of radius
 30 microns (roughly
 10% of one sigma)
- Roughly factor 4 higher energy deposition from Pb ions

50

Generic loss in LHC dipole

- Purpose: study ratio of peak energy deposition in superconductors and expected BLM signal
- Pencil beam hitting in horizontal plane close to entrance of MB dipole, 0.5 mrad incident angle
- Energy deposition scored in beam screen, coils and BLMs
- Roughly factor 4 difference of ED per charge around incident beam

LHC Collimation

References: LHC project note 402, Phys. Rev. STAB 12, 071002 (2009).

LHC Collimation Erroneous trigger of dump kicker Projec (V. Vlachoudis) Superposition of Graphite Protons 7 TeV/c/2 10¹²p 10¹ 5 bunches Graphite Max. Energy Deposition (GeV/cm³) collimator Scaling by charge, the max 10 ¹²

of the hadronic showers are roughly equal for Pb ions and protons

hitting

•

Roughly factor 6 • higher energy deposition per charge from Pb ions at peak R. Bruce, 1/10/2010

Courtesy: V. Vlachoudis, FLUKA team. Reference: LHC design report Ch 21

Conclusions

- Hadronic shower develops with good approximation as if ion consisted of independent nucleons => similar for ions and protons
- Ions have additional peak in energy deposition from ionization where beam hits target (Z² law)
- Resulting energy deposition highly dependent on target material and initial beam distribution
- Worst cases found among old simulations shown here (other simulations exist with lower ratio between Pb ion and proton peak losses)
- From results shown here, we see a factor 4-6 higher peak energy deposition per charge for 2.76 TeV/nucleon Pb ions compared 7 TeV protons
- Systematic study of losses needed to conclude that this is the really worst case