ALICE status report

OUTLINE

- GEANT4

Recent physics highlights

- 9 new publications since last LHCC
- LS2 activities
- Detector commissioning
 - Status and plan for 2022
 - Detector performance from pilot beam
- Status of the upgrades
 - Run4: ITS3 and FoCal
 - Run5+: ALICE 3

PAPERS AND PHYSICS HIGHLIGHTS

09/03/2022

F. Colamaria – 149th LHCC meeting

NEW PUBLICATIONS

Constraining hadronization mechanisms with Λ^+_c/D^0 production ratios in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV	arXiv:2112.08156	9 new publications since last LHCC
Observation of a multiplicity dependence in the p_T -differential charm baryon-to-meson ratios in proton-proton collisions at $\sqrt{s} = 13$ TeV	arXiv:2111.11948	Since last Linco
Measurement of beauty production via non-prompt D ⁰ mesons in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV	arXiv:2202.00815	Heavy flavour
Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at $\sqrt{s} = 5.02$ and 13 TeV	arXiv:2112.09433	
First study of the two-body scattering involving charm hadrons	arXiv:2201.05352	Correlations &
Neutral to charged kaon yield fluctuations in Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV	arXiv:2112.09482	fluctuations
Production of light (anti)nuclei in pp collisions at $\sqrt{s} = 5.02$ TeV	arXiv:2112.00610	
First measurement of the absorption of ${}^{3}\overline{\text{He}}$ nuclei in matter and impact on their propagation in the galaxy	arXiv:2202.01549	(Anti)nuclei
Multiplicity dependence of charged-particle jet production in pp collisions at $\sqrt{s} = 13 \text{ TeV}$	arXiv:2202.01548	} Jet production

NON-PROMPT D⁰ PRODUCTION IN Pb-Pb COLLISIONS

- Heavy quarks: excellent probes for study of microscopic QGP dynamics
 - In-medium **partonic energy loss** due to gluon radiation (at high p_T) and elastic collisions (at lower p_T)
- *b* quark: expected reduced energy loss compared to *c*
 - **Dead-cone effect** vetoes gluon radiation for $\theta < \frac{m_0}{F}$

$$R_{\mathrm{AA}} = rac{\left. rac{\mathrm{d} N}{\mathrm{d} p_{\mathrm{T}}} \right|_{\mathrm{Pb-Pb}}}{\left\langle T_{\mathrm{AA}} \right\rangle \cdot \left. rac{\mathrm{d} \sigma^{\mathrm{D}}}{\mathrm{d} p_{\mathrm{T}}} \right|_{\mathrm{pp}}}$$
 $R_{\mathrm{AA}} = 1 \rightarrow \text{no medium effects}$
 $R_{\mathrm{AA}} \neq 1 \rightarrow \text{breaking of } N_{coll} \text{ scaling due to cold}$
and hot nuclear matter effects

Suppression up to factor 3 (2) in central (semicentral) collisions for $p_T > 5$ GeV/c

NON-PROMPT D⁰ PRODUCTION IN Pb-Pb COLLISIONS

- Ratio of non-prompt/prompt D⁰-meson R_{AA} suggests similar suppression in 2 < $p_{\rm T}$ < 3 GeV/c, and smaller suppression for non-prompt D⁰ at higher $p_{\rm T}$
- Models with radiative+collisional energy loss and with hadronisation via fragmentation+recombination describe data within uncertainties
- Further insights by modifying LGR model configuration
 - Ratio closer to unity if using charm mass for b quarks for E-loss calculation \rightarrow Relevant role of dead-cone effect
 - **Prompt-D⁰ formation via recombination** explains the minimum at 2-3 GeV/c

Λ⁺_c/D⁰ PRODUCTION RATIOS IN Pb–Pb COLLISIONS

- In QGP medium, modified hadronisation of quarks into hadrons compared to pp collisions (coalescence mechanism) + mass-dependent particle spectra p_T shift from collective expansion
- Studied via baryon-to-meson ratios, also in the HF sector
 - Ratio of prompt Λ^+_c over prompt D⁰ mesons, in Pb–Pb collisions (0-10% and 30-50% centrality)

arXiv:2112.08156

- Significant increase of Λ^+_c/D^0 ratio from pp to Pb-Pb central collisions, in $4 < p_T < 8 \text{ GeV/}c$
 - \geq 3.7 σ effect
- Qualitative agreement for models that include hadron formation via coalescence (Catania, Tamu, SHMc)

F. Colamaria - 149th LHCC meeting

Λ⁺_c/D⁰ PRODUCTION RATIOS VERSUS MULTIPLICITY IN pp COLLISIONS

- Studies vs multiplicity in pp collisions nicely connect to observed Pb-Pb enhancement at intermediate p_T
 - Shed further light to non-universality of charm fragmentation across collision systems
- Λ_c^+/D^0 ratios measured vs charged particle multiplicity
 - **5.7** σ significant increase from lowest to highest multiplicity intervals in 1 < p_T < 12 GeV/c
 - No evolution of D₅/D⁰ ratios with multiplicity
- Λ⁺_c/D⁰ multiplicity hierarchy qualitatively reproduced by Pythia8 with CR modes beyond leading colour
- Good description of Λ^+_c/D^0 provided by **CE-SH model** while $\mathbf{D_s}^+/\mathbf{D^0}$ overestimated at high multiplicity

Multiplicity estimator: SPD tracklets, $\propto dN_{\rm ch}/d\eta$ at midrapidity Alternate estimator at forward η also checked to exclude autocorrelations

Λ⁺_c/D⁰ PRODUCTION RATIOS VERSUS MULTIPLICITY IN pp COLLISIONS

- Very similar behaviours of Λ^+_c/D^0 (HF) and Λ/K^0_s (LF) ratios against p_T and multiplicity
 - Same mechanism at play for light- and heavy-flavour final-state particle formation?
 - Confirm modified hadronisation mechanisms, collision-system and multiplicity dependent

- No significant modification of Λ^+_c/D^0 ratios integrated over $p_T > 0$ as a function of charged particle multiplicity
 - Different p_T trend due to modifications of baryon and meson p_T spectra, not to overall baryon enhancement at high multiplicity

Extrapolation to $p_T = 0$ based on p_T shape from Pythia8 CR-BLC

J/ψ PRODUCTION VERSUS MULTIPLICITY IN pp COLLISIONS

- Study of heavy-flavour production as a function of multiplicity in pp can also shed light on the **role of MPI** in heavy-quark production
 - > Self-normalised yields of inclusive J/ψ mesons at forward rapidity in pp at √s = 5.02 (1) and 13 TeV (2)
 - arXiv:2112.09433

- Approximately linear increase with self-normalised multiplicity at midrapidity
 - Independent of collision energy
 - Different trend compared with midrapidity results (3)
- Best description of data trend by 3-Pomeron CGC, Percolation and CPP models, pointing to initial-state effects

Multiplicity estimator: SPD tracklets, $\propto dN_{\rm ch}/d\eta$ at midrapidity

TWO-BODY SCATTERING WITH CHARM HADRONS

- First measurement of interaction between charm hadron and nucleon via femtoscopic studies
 - Gives access to residual strong interaction in charm sector
 - Also relevant to explain structure of exotic states with charm (XYZ states, T_{cc}⁺, P_c states, ...)

- Two-particle momentum correlation function $C(k^*)$ of pD^- and $\overline{p}D^+$ pairs measured in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV
- Connection to source function and two-particle wave function:

$$C(k^*) = \int \mathrm{d}^3 r^* S(r^*) |\Psi(k^*,r^*)|^2 o$$
 Koonin-Pratt equation

➤ Allows to extract the potential for proton and D⁻ meson interaction

J. Haidenbauer *et al.* $(g^2/4\pi = 2.25)$

TWO-BODY SCATTERING WITH CHARM HADRONS

Model	$f_0 (I = 0)$	$f_0 (I = 1)$	n_{σ}
Coulomb			(1.1–1.5)
Haidenbauer et al.			
$-g_{\sigma}^{2}/4\pi = 1$	0.14	-0.28	(1.2-1.5)
$-g_{\sigma}^{2}/4\pi = 2.25$	0.67	0.04	(0.8-1.3)
Hofmann and Lutz	-0.16	-0.26	(1.3–1.6)
Yamaguchi et al.	-4.38	-0.07	(0.6-1.1)
Fontoura et al.	0.16	-0.25	(1.1-1.5)

- Data consistent with an attractive potential
- 1.1σ – 1.5σ compatibility with **Coulomb-only interaction**
- Improved agreement adding an attractive strong interaction (Yamaguchi et al., Haidenbauer et al.)

 $f_0 < 0$: Repulsive potential or attractive with bound state

- **Inverse scattering length** $f_{0,l=0}^{-1}$ of ND system, by constraining to data the correlation function obtained varying source radius and potential $V_{i=0}$
 - ▶ In 1σ from best fit: $V_{t-0} \in [-1450, -1050]$ MeV $\rightarrow f_0^{-1} = 0$ ∈ [-0.4, 0.9] fm⁻¹
 - Consistent with attractive interaction, with or without bound state

ABSORPTION OF ³He IN MATTER

- Measurements of antinuclei provide important input for astrophysics and dark-matter studies
 - ➤ One of dominant production mechanisms is **DM annihilation** (e.g. $\chi + \chi \rightarrow W^+W^- \rightarrow {}^3\overline{\text{He}} + X$)
- **Disappearance probability** of antinuclei (quantified by σ_{lnel}) while traversing matter is one of the main ingredients for modeling their propagation and studying the galaxy transparency

- First σ_{inel} measurement done by ALICE for ³He
 - Antinuclei factory + interaction in detector material
 - Via baryon/antibaryon ratio (pp), or TOF-to-TPC ratio (Pb-Pb)
- GEANT4 modeling consistent within
 2σ sigma with data

arXiv:2202.01549

ABSORPTION OF ³He IN MATTER

- Propagation through galaxy of ³He from dark-matter decays and cosmic-ray interactions based on transport equation
 - Inelastic interactions modeled via p_T and A-scaling of experimentally measured $\sigma_{lnel}(^3\overline{He})$

arXiv:2202.01549

ABSORPTION OF ³He IN MATTER

- Propagation through galaxy of ³He from dark-matter decays and cosmic-ray interactions based on transport equation
 - \triangleright Inelastic interactions modeled via p_T and A-scaling of experimentally measured $\sigma_{lnel}(^3\overline{He})$
- Estimated flux of ³He near Earth, before and after solar modulation
 - Consistent with model predictions using different $\sigma_{lnel}(^{3}\overline{He})$ parameterizations
- Transparency of galaxy about 50% for DM source, 25% for low-E ³He from cosmic-ray background
- Experimentally-driven uncertainties reduced to 10%-15%, subleading w.r.t. other ingredients used for DM modelling

Propagation performed using GALPROP code

LS2 ACTIVITIES AND COMMISSIONING

09/03/2022

F. Colamaria – 149th LHCC meeting

ALICE 2 DETECTOR

Main objectives for ALICE detector for Run 3+4:

- Collect $L_{int} \approx 13 \text{ nb}^{-1}$ of Pb-Pb collisions $\rightarrow x50-x100$ statistics increase for most of the observables
- Sustain rate of 50 kHz for Pb-Pb collisions, with continuous readout and online data reconstruction

Substantial improvements in **vertexing capabilities** and **tracking efficiency**

New/improved systems:

- New tracking systems based on MAPS:
 - **▶ Inner Tracking System** (ITS) ···
 - **► Muon Forward Tracker** (MFT)
- New Fast Interaction Trigger (FIT) detector
- TPC readout chambers employing GEM
- New Online/Offline system (O²) for data processing and reconstruction
- Upgraded readout systems for the other detectors, to cope with continuous readout

- ITS | Inner Tracking System
- 2 TPC | Time Projection Chamber
- TRD | Transition Radiation Detector
- 4 TOF | Time Of Flight
- **EMCal** | Electromagnetic Calorimeter
- PHOS / CPV | Photon Spectrometer
- 7 HMPID | High Momentum Particle Identification Detector
- MFT Muon Forward Tracker
- FIT | Fast Interaction Trigger
- Muon Spectrometer
- 1 ZDC | Zero Degree Calorimeter

ALICE LS2 SCHEDULE

LS2 RECENT ACTIVITIES AND PLANS

Latest activities at P2 and roadmap

- Finished installation of ALICE subsystems, maintenance/replacement activities for several detectors (TOF, ITS, MFT, TPC, MCH, EMCal, Dcal, PHOS)
- L3 doors closed February 14, ventilation reinstalled February 15, miniframe shielding installed the following week
- ALICE closed by week 9 (March 2nd) and restart magnets in week 10 (March 7th)
- Underground access ends on March 24th
- Machine commissioning with beam expected to start on April 13th (Easter week)

ALICE COMMISSIONING – PLANS UP TO STABLE BEAMS

Roadmap to 13.6 TeV Collisions

- Week 8-14 (February-April): Global and standalone commissioning with Weekly Run Plans
- Week 15-23 (April-June): Global commissioning with synthetic runs exploiting MC fake data

- Weeks 19,23: new rounds of 900 GeV collisions (min 2 fills)
- Then ready for Stable Beams at 13.6 TeV
 - > **Start-up plans** for p-p running after first SB are **ready**, to be discussed with machine experts
- Decided to preserve possibility of Virtual Shift Blocks for some systems, until the beginning of data taking

HIGHLIGHTS FROM PILOT BEAM

- Good detector performance from pilot beam
- Data are being exploited for alignment studies
- New analysis framework commissioned with data

ITS pre-alignment using cosmics and pilot-beam data

HIGHLIGHTS FROM PILOT BEAM

STATUS OF ALICE UPGRADES

F. Colamaria – 149th LHCC meeting

ALICE UPGRADES TIMELINE

ITS3 STATUS

Replacement of ITS2 inner barrel with the novel ITS3 during LS3

- Three layers of wafer-scale sensors of ultra-thin MAPS, bent around the beam pipe
 - \triangleright ~6x less material budget: ~0.02-0.04% X_0 per layer
 - First layer at 18 mm from IP \rightarrow **2x** pointing resolution and low- p_T efficiency

Mechanics updates

Wind tunnel studies with model + heaters

- Verified possibility of cooling via airflow
- Larger heating at periphery, can be dissipated via a carbon foam radiator, no water cooling required

Super-ALPIDE chips

Assembled and bent, to be bonded on exoskeleton and tested

V average [m/s

15

LoI: CERN-LHCC-2019-018

ITS3 STATUS

Sensor developments

Test structures from MLR1 submission received (TowerJazz 65 nm)

Tests in laboratory and with beam

Digital Pixel Test Structures (DPTS) operational with 100% efficiency

DPTS remains fully efficient after combined NIEL + TID irradiation

- Further tests performed with DPTS and other types of structures
 - Position resolution, cluster size, time resolution, ...
- 65 nm process is a viable solution for ITS3 and beyond

Test beam results with two displaced DPTS

DPTS test beam setup

FoCal STATUS

FoCal: forward electromagnetic+hadronic calorimeter → Run4 upgrade

- FoCal-E: high-granularity Si-W sampling calorimeter for **direct** γ and π_0
- FoCal-H: metal-scintillator sampling calorimeter for photon isolation and jets

Test beam in September 2021

- FoCal-E: 2 pixel (ALPIDE) layers, 1 pad layer
- FoCal-H: complete prototype, commercial readout system
- Full-pixel prototype: EPICAL-2

Next steps:

- Further laboratory tests of pad readout
- Construct full FoCal-E tower prototype
- 2 test beams planned in 2022 (June for pad electronics, Sep/Oct for full demonstrator)

LoI ALICE-PUBLIC-2019-005

HCAL prototype

EPICAL-2: data and simulation

09/03/2022

F. Colamaria – 149th LHCC meeting

ALICE 3 – PHYSICS GOALS

Several questions in key areas still expected to remain unaddressed after Run 3+4!

→ New dedicated heavy-ion detector currently under planning for Run 5 and beyond: ALICE 3

Selection of key points of ALICE 3 physics programme

- Precision measurements of dileptons
 - Characterisation and evolution of the QGP
 - Chiral symmetry restoration
- Systematic measurements of (multi-)heavy-flavoured hadrons
 - Transport properties and diffusion in the QGP
 - Mechanisms of hadronisation
- Hadron correlation measurements
 - Interaction potentials
 - > Fluctuations of conserved charges

Compact, low-mass all-silicon tracker, with excellent vertexing and PID capabilities over wide acceptance

ALICE 3 – HIGHLIGHTS FROM LoI STUDIES

Heavy-flavour transport

 Goal: understand heavy quark diffusion and how they reach thermalisation

- Charm and beauty transport in the diffusion regime:
 - $ightharpoonup R_{AA}$ and v_2 of mesons and baryons down to low p_T
- Access to angular decorrelation and further sensitivity to energy loss mechanisms via DD correlations

ALICE 3 – HIGHLIGHTS FROM LoI STUDIES

Multi-charm and exotic states

- Multi-charm baryons: unique probe of hadron formation of multiple constants. scatterings
- SHM predicts very large enhancement in AA
 - \triangleright Characteristic relation between *n*-charm yields (q_c^N)

- Characterisation of **charm exotic states**: X(3872), T_{cc}^+ , ...
 - Yield measurements to understand dissociation and regeneration in QGP
 - Femtoscopic studies to investigate their **structure**

ALICE 3 – HIGHLIGHTS FROM LoI STUDIES

Electromagnetic probes

- Precise measurement of QGP temperature in its early stages from invariant mass dilepton measurements
 - $ightharpoonup 1 < m_{\rm ee} < 3 \, {\rm GeV}/c^2$ range dominated by thermal emission
 - Differential measurement to probe time dependence of T
- Improved precision compared to Run 3+4 measurements
- Complementary measurement of temperature via spectrum of direct photons
 - Different set of systematic uncertainties

Dominated by black-body radiation from QGP

1.2

.4 1.6

data"/cocktail

 $m_{\rm ee}$ (GeV/c²)

ALICE 3 – DEVELOPMENT OF PROPOSAL

Letter of Intent submitted and reviewed by LHCC

- Lol draft **endorsed** by ALICE Collaboration Board with very strong support
- Submitted to the LHCC for review
 - The review process has led to a report from the LHCC review panel for discussion this week
- Final version in preparation, public release of final version shortly

8	C	men	is a second of the second of t	
9	1	Intro	duction	9
10		1.1	Present status of heavy-ion physics at the LHC	9
11		1.2	Heavy-ion physics at the LHC beyond Run 4	10
12		1.3	Ion collisions at the LHC	14
13		1.4	Detector concept	17
14		1.5	Uniqueness and competitiveness	22
15	2	Phys	ics motivation and goals	24
16	-	2.1	Heavy quark propagation and hadronisation	24
17			2.1.1 Beauty hadron production and flow	26
18			2.1.2 Transverse momentum broadening of $D\overline{D}$ pairs	27
19			2.1.3 QGP hadronisation and multi-charm hadrons	28
20		2.2	Bound states	31
21			2.2.1 Quarkonium states	31
22			2.2.2 Exotic hadrons	33
23		2.3	Collective effects in small collision systems	35
24		2.4	Characterization of high-multiplicity pp events	35
25		2.5	Electromagnetic radiation	36
26		2.6	Chiral symmetry restoration	38
27		2.7	Electrical conductivity	40
28		2.8	Fluctuations of conserved charges	41
29		2.9	Ultra-soft photons	44
30			2.9.1 Low's theorem and the infrared limit of gauge theories	44
31			2.9.2 Experimental situation and proposed measurements	46
32		2.10	Hadronic physics	48
33			2.10.1 Study of the strong interaction between heavy flavour hadrons \dots	48
34			2.10.2 Search for exotic anti-, hyper- and super-nuclei	51
35			2.10.3 Study of b-quark decays into ³ He	53
36			2.10.4 Photoproduction of vector mesons	53
37			2.10.5 Photoproduction of dijets and open heavy flavour pairs	55
38		2.11	BSM studies	55
39			2.11.1 Light-by-light scattering measurements	56
40			2.11.2 Axion-like particle searches	56
41	3	Perf	ormance	59

SUMMARY

BACKUP SLIDES

F. Colamaria – 149th LHCC meeting

Λ⁺_c/D⁰ PRODUCTION RATIOS VERSUS MULTIPLICITY IN pp COLLISIONS

- From charm baryon-to-meson ratio measurements, **charm fragmentation** is **not universal** across collision systems
 - ightharpoonup pp ratios enhanced compared to e⁺e⁻, e⁻p, in particular at low p_{T}

Λ⁺_c/D⁰ PRODUCTION RATIOS IN Pb–Pb COLLISIONS

- Nuclear modification factor of prompt Λ^+_c consistent with unity up to 6 GeV/c, Λ^+_c suppression for higher p_T
 - \triangleright Similar R_{AA} values between the two centrality classes
- Hint of **larger** R_{AA} compared to D-meson average for central collisions in $6 < p_T < 12 \text{ GeV/}c$ range
 - ► Hint of hierarchy of $R_{AA}(\Lambda^+_c) > R_{AA}(D^+_s) > R_{AA}(D^0,D^+,D^{*+})$ points toward relevant impact of coalescence on charm hadron formation

OTHER RESULTS FROM PUBLICATIONS

- Production of (anti)nuclei as a function of multiplicity in pp collisions
- d/p and ³He/p results qualitatively described by coalescence model and SHM for canonic ensemble
- Discrepancies possibly related to system size determination

OTHER RESULTS FROM PUBLICATIONS

 Isospin fluctuations in kaon sector, and their multiplicity dependence, sensitive to chiral phase transition

$$> v_{\text{dyn}} = R_{\text{cc}} + R_{00} - 2R_{\text{c0}}$$

- Breaking of centrality scaling observed for $v_{\rm dyn}/\alpha$ not reproduced by models
- No significant low-p_T enhancement observed, not supporting the production of disoriented chiral condensates (DCC)

OTHER RESULTS FROM PUBLICATIONS

- Measurement of inclusive charged jets produciton vs charged particle multiplicity in pp
 - Better agreement with NLO models, compared to LO, though yields overestimated below 20 GeV/c
- From ratios of production cross sections at different R, stronger collimation for high- p_{T} jets observed
- Self-normalised yields: faster-than-linear increase observed for all values of jet radius R

ALICE COMMISSIONING - STATUS

Recommissioning without beam is progressing well

- MW2 (week 7): first large testing focused on detector calibrations, with strong development and progresses
- MW approach extended with Weekly Run Plans
 - > Plan activities by balancing detector standalone testing and exercise Central Systems to achieve long term stability
- **Global runs** done with cosmic data taking and synthetic running (unstable beam)

- Now possible to perform CRU+CRORC global runs
- Possibility to run with intermittent error conditions using incomplete TF building

Example: 8.5h run with EMC (CRORC) + MFT + MID + TOF + TPC + TRD (CRU)