ALICE status report

09/03/2022

Fabio Colamaria
for the ALICE Collaboration
INFN – Sezione di Bari

149th LHCC meeting
• Recent physics highlights
 ➢ 9 new publications since last LHCC

• LS2 activities

• Detector commissioning
 ➢ Status and plan for 2022
 ➢ Detector performance from pilot beam

• Status of the upgrades
 ➢ Run4: ITS3 and FoCal
 ➢ Run5+: ALICE 3
PAPERS AND PHYSICS HIGHLIGHTS

09/03/2022

F. Colamaria – 149th LHCC meeting
<table>
<thead>
<tr>
<th>Title</th>
<th>arXiv:2112.08156</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraining hadronization mechanisms with (\Lambda^+ / D^0) production ratios in Pb–Pb collisions at (\sqrt{s_{_{NN}}} = 5.02) TeV</td>
<td></td>
</tr>
<tr>
<td>Observation of a multiplicity dependence in the (p_T)-differential charm baryon-to-meson ratios in proton-proton collisions at (\sqrt{s} = 13) TeV</td>
<td>arXiv:2111.11948</td>
</tr>
<tr>
<td>Measurement of beauty production via non-prompt (D^0) mesons in Pb–Pb collisions at (\sqrt{s_{_{NN}}} = 5.02) TeV</td>
<td>arXiv:2202.00815</td>
</tr>
<tr>
<td>Forward rapidity (J/\psi) production as a function of charged-particle multiplicity in pp collisions at (\sqrt{s} = 5.02) and 13 TeV</td>
<td>arXiv:2112.09433</td>
</tr>
<tr>
<td>First study of the two-body scattering involving charm hadrons</td>
<td>arXiv:2201.05352</td>
</tr>
<tr>
<td>Neutral to charged kaon yield fluctuations in Pb–Pb collisions at (\sqrt{s_{_{NN}}} = 2.76) TeV</td>
<td>arXiv:2112.09482</td>
</tr>
<tr>
<td>Production of light (anti)nuclei in pp collisions at (\sqrt{s} = 5.02) TeV</td>
<td>arXiv:2112.00610</td>
</tr>
<tr>
<td>First measurement of the absorption of (^3\text{He}) nuclei in matter and impact on their propagation in the galaxy</td>
<td>arXiv:2202.01549</td>
</tr>
<tr>
<td>Multiplicity dependence of charged-particle jet production in pp collisions at (\sqrt{s} = 13) TeV</td>
<td>arXiv:2202.01548</td>
</tr>
</tbody>
</table>
• Heavy quarks: excellent probes for study of microscopic QGP dynamics
 ➢ In-medium partonic energy loss due to gluon radiation (at high p_T) and elastic collisions (at lower p_T)

• b quark: expected reduced energy loss compared to c
 ➢ Dead-cone effect vetoes gluon radiation for $\theta < \frac{m_Q}{E}$
 Also observed in pp collisions for c quark (arXiv:2106.05713)

• Nuclear modification factor of D^0 mesons from beauty-hadron decays

$$R_{AA} = \frac{\left. \frac{dN^D}{dp_T} \right|_{\text{Pb-Pb}}}{\left. \frac{d\sigma^D}{dp_T} \right|_{\text{pp}}}$$

$R_{AA} = 1 \rightarrow$ no medium effects

$R_{AA} \neq 1 \rightarrow$ breaking of N_{coll} scaling due to cold and hot nuclear matter effects

• Suppression up to factor 3 (2) in central (semicentral) collisions for $p_T > 5$ GeV/c

arXiv:2202.00815
• Ratio of non-prompt/prompt D^0-meson R_{AA} suggests similar suppression in $2 < p_T < 3$ GeV/c, and smaller suppression for non-prompt D^0 at higher p_T

• Models with radiative+collisional energy loss and with hadronisation via fragmentation+recombination describe data within uncertainties

• Further insights by modifying LGR model configuration
 - Ratio closer to unity if using charm mass for b quarks for E-loss calculation → Relevant role of dead-cone effect
 - Prompt-D^0 formation via recombination explains the minimum at 2-3 GeV/c

arXiv:2202.00815
• In QGP medium, modified hadronisation of quarks into hadrons compared to pp collisions (coalescence mechanism) + mass-dependent particle spectra p_T shift from collective expansion

• Studied via baryon-to-meson ratios, also in the HF sector
 ➢ Ratio of prompt $\Lambda^+ c$ over prompt D^0 mesons, in Pb–Pb collisions (0-10% and 30-50% centrality)

• Significant increase of $\Lambda^+ c/D^0$ ratio from pp to Pb-Pb central collisions, in $4 < p_T < 8$ GeV/c
 ➢ 3.7σ effect

• Qualitative agreement for models that include hadron formation via coalescence (Catania, Tamu, SHMc)
Studies vs multiplicity in pp collisions nicely connect to observed Pb-Pb enhancement at intermediate p_T

- Shed further light to non-universality of charm fragmentation across collision systems

- Λ^+/D^0 ratios measured vs charged particle multiplicity
 - 5.7σ significant increase from lowest to highest multiplicity intervals in $1 < p_T < 12$ GeV/c
 - No evolution of D_s^+/D^0 ratios with multiplicity

- Λ^+/D^0 multiplicity hierarchy qualitatively reproduced by Pythia8 with CR modes beyond leading colour

- Good description of Λ^+/D^0 provided by CE-SH model, while D_s^+/D^0 overestimated at high multiplicity

Multiplicity estimator: SPD tracklets, $\propto dN_{ch}/d\eta$ at midrapidity
Alternate estimator at forward η also checked to exclude autocorrelations

arXiv:2111.11948

09/03/2022
F. Colamaria – 149th LHCC meeting
• Very similar behaviours of $\Lambda^+ c/D^0$ (HF) and Λ/K^0_s (LF) ratios against p_T and multiplicity

- **Same mechanism** at play for light- and heavy-flavour final-state particle formation?
- **Confirm modified hadronisation** mechanisms, collision-system and multiplicity dependent

• **No significant modification** of $\Lambda^+ c/D^0$ ratios integrated over $p_T > 0$ as a function of charged particle multiplicity

- Different p_T trend due to modifications of baryon and meson p_T spectra, not to overall baryon enhancement at high multiplicity

Extrapolation to $p_T = 0$ based on p_T shape from Pythia8 CR-BLC
• Study of heavy-flavour production as a function of multiplicity in pp can also shed light on the role of MPI in heavy-quark production
 - **Self-normalised yields** of inclusive J/ψ mesons at forward rapidity in pp at \(\sqrt{s} = 5.02 \) TeV and 13 TeV

• **Approximately linear increase** with self-normalised multiplicity at midrapidity
 - Independent of collision energy
 - **Different trend** compared with midrapidity results

• Best description of data trend by 3-Pomeron CGC, Percolation and CPP models, pointing to initial-state effects

Multiplicity estimator: SPD tracklets, \(\propto \frac{dN{\text{ch}}}{d\eta} \) at midrapidity_
• First measurement of interaction between charm hadron and nucleon via femtoscopic studies
 ➢ Gives access to residual strong interaction in charm sector
 ➢ Also relevant to explain structure of exotic states with charm (XYZ states, T_{cc}^+, P_c states, ...)

• Two-particle momentum correlation function $C(k^*)$ of pD^- and $\bar{p}D^+$ pairs measured in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV

• Connection to source function and two-particle wave function:

 $$C(k^*) = \int d^3r^* S(r^*) \left| \Psi(k^*, r^*) \right|^2 \quad \text{→ Koonin-Pratt equation}$$

 ➢ Allows to extract the potential for proton and D^- meson interaction
TWO-BODY SCATTERING WITH CHARM HADRONS

<table>
<thead>
<tr>
<th>Model</th>
<th>f_0 (I = 0)</th>
<th>f_0 (I = 1)</th>
<th>$n_{1\sigma}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coulomb</td>
<td></td>
<td></td>
<td>(1.1–1.5)</td>
</tr>
<tr>
<td>Haidenbauer et al.</td>
<td>0.14</td>
<td>−0.28</td>
<td>(1.2–1.5)</td>
</tr>
<tr>
<td>$-g_\sigma^2/4\pi = 1$</td>
<td>0.67</td>
<td>0.04</td>
<td>(0.8–1.3)</td>
</tr>
<tr>
<td>Hofmann and Lutz</td>
<td>−0.16</td>
<td>−0.26</td>
<td>(1.3–1.6)</td>
</tr>
<tr>
<td>Yamaguchi et al.</td>
<td>−4.38</td>
<td>−0.07</td>
<td>(0.6–1.1)</td>
</tr>
<tr>
<td>Fontoura et al.</td>
<td>0.16</td>
<td>−0.25</td>
<td>(1.1–1.5)</td>
</tr>
</tbody>
</table>

- **Data consistent with an attractive potential**
 - 1.1σ–1.5σ compatibility with Coulomb-only interaction
 - Improved agreement adding an attractive strong interaction (Yamaguchi et al., Haidenbauer et al.)

- $f_0 > 0$: Attractive potential
- $f_0 < 0$: Repulsive potential or attractive with bound state

Inverse scattering length $f_{0,I=0}^{-1}$ of ND system, by constraining to data the correlation function obtained varying source radius and potential $V_{I=0}$

- In 1σ from best fit: $V_{I=0} \in [-1450, -1050]$ MeV $\rightarrow f_{0,I=0}^{-1} \in [-0.4, 0.9]$ fm$^{-1}$
- Consistent with attractive interaction, with or without bound state

arXiv:2201.05352 (estimated source size)
Measurements of antinuclei provide important input for astrophysics and dark-matter studies

- One of dominant production mechanisms is DM annihilation (e.g. $\chi + \chi \rightarrow W^+W^- \rightarrow ^3\text{He} + X$)

- Disappearance probability of antinuclei (quantified by σ_{inel}) while traversing matter is one of the main ingredients for modeling their propagation and studying the galaxy transparency

First σ_{inel} measurement done by ALICE for ^3He

- Antinuclei factory + interaction in detector material
- Via baryon/antibaryon ratio (pp), or TOF-to-TPC ratio (Pb-Pb)

GEANT4 modeling consistent within 2σ sigma with data

arXiv:2202.01549
ABSORPTION OF ^{3}He IN MATTER

- Propagation through galaxy of ^{3}He from **dark-matter decays** and **cosmic-ray interactions** based on transport equation
 - Inelastic interactions modeled via p_T- and A-scaling of experimentally measured $\sigma_{\text{inel}}(^{3}\text{He})$

Distribution of DM as a function of distance from galactic centre

Modeled ^{3}He sources

Interactions of high-energy cosmic rays with interstellar medium

Dark-matter decays (WIMPS of 100 GeV/c2)

arXiv:2202.01549
Proposition through galaxy of ^3He from **dark-matter decays** and **cosmic-ray interactions** based on transport equation

- Inelastic interactions modeled via p_T- and A-scaling of experimentally measured $\sigma_{\text{inel}}(^3\text{He})$

- **Estimated flux of ^3He** near Earth, before and after solar modulation
 - Consistent with model predictions using different $\sigma_{\text{inel}}(^3\text{He})$ parameterizations

- Transparency of galaxy about **50% for DM source**, 25% for low-E ^3He from cosmic-ray background

- Experimentally-driven uncertainties reduced to **10%-15%**, subleading w.r.t. other ingredients used for DM modelling

Propagation performed using GALPROP code
LS2 ACTIVITIES AND COMMISSIONING
Main objectives for ALICE detector for Run 3+4:

• Collect $L_{\text{int}} \approx 13 \text{ nb}^{-1}$ of Pb-Pb collisions $\rightarrow x50$-$x100$ statistics increase for most of the observables

• Sustain rate of 50 kHz for Pb-Pb collisions, with continuous readout and online data reconstruction

• Substantial improvements in vertexing capabilities and tracking efficiency

New/improved systems:

• New tracking systems based on MAPS:
 - Inner Tracking System (ITS)
 - Muon Forward Tracker (MFT)

• New Fast Interaction Trigger (FIT) detector

• TPC readout chambers employing GEM

• New Online/Offline system (O2) for data processing and reconstruction

• Upgraded readout systems for the other detectors, to cope with continuous readout
Latest activities at P2 and roadmap

- **Finished installation** of ALICE subsystems, **maintenance/replacement activities** for several detectors (TOF, ITS, MFT, TPC, MCH, EMCal, Dcal, PHOS)
- L3 doors closed February 14, ventilation reinstalled February 15, miniframe shielding installed the following week
- ALICE closed by week 9 (March 2nd) and restart magnets in week 10 (March 7th)
- **Underground access** ends on **March 24th**
- **Machine commissioning with beam** expected to start on **April 13th** (Easter week)
ALICE COMMISSIONING – PLANS UP TO STABLE BEAMS

Roadmap to 13.6 TeV Collisions

• **Week 8-14** (February-April): Global and standalone commissioning with Weekly Run Plans
• **Week 15-23** (April-June): Global commissioning with synthetic runs exploiting MC fake data

- **Weeks 19,23**: new rounds of 900 GeV collisions (min 2 fills)
- Then **ready for Stable Beams** at 13.6 TeV
 - **Start-up plans** for p-p running after first SB are ready, to be discussed with machine experts
- Decided to preserve possibility of **Virtual Shift Blocks** for some systems, until the beginning of data taking
HIGHLIGHTS FROM PILOT BEAM

- Good **detector performance** from pilot beam
- Data are being exploited for alignment studies
- New analysis framework commissioned with data

ITS pre-alignment using cosmics and pilot-beam data

TOF PID performance

TPC PID performance

DeltaX between prongs of cosmic muon tracks
HIGHLIGHTS FROM PILOT BEAM

FT0 vs track-based z_{vtx} position

η of standalone MFT tracks vs z_{vtx} position

Invariant mass peak of π^0 from EMCal+DCal

calibration ongoing

Two-cluster invariant mass distribution

ALICE pilot beam data
$pp \, \sqrt{s} = 900 \text{ GeV}$
clus. rec with EMCal + DCal

$3.00 < p_{\pi} \leq 4.00 \text{ GeV/c}$
Replacement of ITS2 inner barrel with the novel ITS3 during LS3
- Three layers of wafer-scale sensors of ultra-thin MAPS, bent around the beam pipe
 - ~6x less material budget: ~0.02-0.04% X_0 per layer
 - First layer at 18 mm from IP \rightarrow 2x pointing resolution and low-p_T efficiency

Mechanics updates

Wind tunnel studies with model + heaters
- Verified possibility of cooling via airflow
- Larger heating at periphery, can be dissipated via a carbon foam radiator, no water cooling required

Super-ALPIDE chips
- Assembled and bent, to be bonded on exoskeleton and tested

LoI: CERN-LHCC-2019-018
Sensor developments
Test structures from MLR1 submission received (TowerJazz 65 nm)

Tests in laboratory and with beam
- Digital Pixel Test Structures (DPTS) operational with 100% efficiency
 - DPTS remains fully efficient after combined NIEL + TID irradiation
- Further tests performed with DPTS and other types of structures
 - Position resolution, cluster size, time resolution, ...
- 65 nm process is a viable solution for ITS3 and beyond

DPTS test beam setup

Test beam results with two displaced DPTS

Reconstructed telescope tracks, on plane between 2 DPTS sensors

DPTS D
- wafer: 22
- chip: 1
- version: 1
- split: 4 (opt.)
- $V_{peak} = -1.2$ V
- $I_{peak} = 100$ mA
- $I_{bias} = 10$ mA
- $V_{bias} = 300$ mV
- $V_{res} = 250$ mV

DPTS E
- wafer: 22
- chip: 1
- version: 1
- split: 4 (opt.)
- $V_{peak} = -1.2$ V
- $I_{peak} = 10$ mA
- $I_{bias} = 100$ mA
- $V_{bias} = 300$ mV
- $V_{res} = 280$ mV
FoCal: forward electromagnetic+hadronic calorimeter → Run4 upgrade

- **FoCal-E**: high-granularity Si-W sampling calorimeter for direct γ and π_0
- **FoCal-H**: metal-scintillator sampling calorimeter for photon isolation and jets

Test beam in September 2021

- **FoCal-E**: 2 pixel (ALPIDE) layers, 1 pad layer
- **FoCal-H**: complete prototype, commercial readout system
- Full-pixel prototype: **EPICAL-2**

Next steps:

- Further laboratory tests of pad readout
- Construct full FoCal-E tower prototype
- 2 test beams planned in 2022 (June for pad electronics, Sep/Oct for full demonstrator)

LoI ALICE-PUBLIC-2019-005
Several questions in key areas still expected to remain unaddressed after Run 3+4!

→ New dedicated heavy-ion detector currently under planning for Run 5 and beyond: ALICE 3

Selection of key points of ALICE 3 physics programme

• Precision measurements of dileptons
 ➢ Characterisation and evolution of the QGP
 ➢ Chiral symmetry restoration

• Systematic measurements of (multi-)heavy-flavoured hadrons
 ➢ Transport properties and diffusion in the QGP
 ➢ Mechanisms of hadronisation

• Hadron correlation measurements
 ➢ Interaction potentials
 ➢ Fluctuations of conserved charges
• Goal: understand **heavy quark diffusion** and how they reach thermalisation

• **Charm and beauty transport** in the diffusion regime:
 - R_{AA} and v_2 of mesons and baryons down to low p_T
 - Access to **angular decorrelation** and further sensitivity to **energy loss** mechanisms via $D\bar{D}$ correlations
Multi-charm and exotic states

- **Multi-charm baryons**: unique probe of hadron formation
 - Requires production of multiple c quarks via (>1) hard scatterings
- **SHM predicts very large enhancement** in AA
 - Characteristic relation between n-charm yields (g_c^N)

- **Characterisation of charm exotic states**: $X(3872)$, T_{cc}^+, ...
 - Yield measurements to understand dissociation and regeneration in QGP
 - Femtoscopic studies to investigate their structure
Electromagnetic probes

- Precise measurement of *QGP temperature* in its early stages from invariant mass dilepton measurements
 - $1 < m_{ee} < 3 \text{ GeV}/c^2$ range dominated by thermal emission
 - Differential measurement to probe *time dependence* of T

- **Improved precision** compared to Run 3+4 measurements

- Complementary measurement of temperature via spectrum of *direct photons*
 - Different set of systematic uncertainties

Dilepton invariant mass spectrum

- Dominated by black-body radiation from QGP
Letter of Intent submitted and reviewed by LHCC

- Lol draft endorsed by ALICE Collaboration Board with very strong support
- Submitted to the LHCC for review
 - The review process has led to a report from the LHCC review panel for discussion this week
- Final version in preparation, public release of final version shortly
SUMMARY

• New physics results from Run 2 being continuously released in key areas
• ALICE 2 ready for end of LS2, detector commissioning is on track
• Successful pilot beam data taking, data being exploited for alignment and first measurements
• Run 4 upgrades advancing at a good pace
• LoI of ALICE 3 submitted and reviewed by LHCC
• From charm baryon-to-meson ratio measurements, **charm fragmentation is not universal** across collision systems

 ➢ pp ratios enhanced compared to e^+e^-, e^-p, in particular at low p_T

Λ⁺/D⁰ production ratios versus multiplicity in pp collisions

ALICE

ALICE

pp, √s = 5 TeV

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>E/π⁰ ≤ 80 GeV/c</th>
<th>E/π⁰ > 80 GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>Mode 2</td>
<td>Mode 3</td>
<td>Mode 4</td>
</tr>
</tbody>
</table>

ARXIV:2011.06078

ARXIV:2105.05187

ALICE Preliminary

pp, √s = 5 TeV, |y| < 0.5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>E/π⁰ ≤ 80 GeV/c</th>
<th>E/π⁰ > 80 GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>Mode 2</td>
<td>Mode 3</td>
<td>Mode 4</td>
</tr>
</tbody>
</table>

Δ: Λ⁺/D⁰ production ratios versus multiplicity in pp collisions

ALICE

pp, √s = 13 TeV

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>E/π⁰ ≤ 80 GeV/c</th>
<th>E/π⁰ > 80 GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>Mode 2</td>
<td>Mode 3</td>
<td>Mode 4</td>
</tr>
</tbody>
</table>

ARXIV:2011.06078

ARXIV:2105.05187

PYTHIA 8.243, Monash 2013

PYTHIA 8.243, CR-BLC:

Mode 0 Mode 2 Mode 3

SHM+RQM Catania QCM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>E/π⁰ ≤ 80 GeV/c</th>
<th>E/π⁰ > 80 GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>Mode 2</td>
<td>Mode 3</td>
<td>Mode 4</td>
</tr>
</tbody>
</table>

arXiv:2011.06078

arXiv:2105.05187

ALICE Preliminary

pp, √s = 13 TeV, |y| < 0.5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>E/π⁰ ≤ 80 GeV/c</th>
<th>E/π⁰ > 80 GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>Mode 2</td>
<td>Mode 3</td>
<td>Mode 4</td>
</tr>
</tbody>
</table>

PYTHIA 8

Monash × BR CR-BLC Mode 2 × BR Data QCM × BR

QCM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>E/π⁰ ≤ 80 GeV/c</th>
<th>E/π⁰ > 80 GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>Mode 2</td>
<td>Mode 3</td>
<td>Mode 4</td>
</tr>
</tbody>
</table>

BR(Ω⁺ → Ω π⁺) = (0.51 ± 0.07)% [EPJC 80, 1066 (2020)]

F. Colamaria – 149th LHCC meeting

09/03/2022
Nuclear modification factor of prompt $\Lambda^+ c$ consistent with unity up to 6 GeV/c, $\Lambda^+ c$ suppression for higher p_T

- Similar R_{AA} values between the two centrality classes

Hint of larger R_{AA} compared to D-meson average for central collisions in $6 < p_T < 12$ GeV/c range

- **Hint of hierarchy of** $R_{AA}(\Lambda^+ c) > R_{AA}(D^+_s) > R_{AA}(D^0, D^+, D^{*+})$ points toward relevant impact of coalescence on charm hadron formation

[Graph and plot showing R_{AA} values for different centrality classes and p_T ranges.]

ALICE

Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV

Prompt Λ^+_c, $|y| < 0.5$

F. Colamaria – 149th LHCC meeting

09/03/2022

arXiv:2112.08156
• Production of (anti)nuclei as a function of multiplicity in pp collisions

• d/p and 3He/p results qualitatively described by coalescence model and SHM for canonic ensemble

• Discrepancies possibly related to system size determination
Isospin fluctuations in kaon sector, and their multiplicity dependence, sensitive to chiral phase transition

\[v_{\text{dyn}} = R_{cc} + R_{00} - 2R_{c0} \]

Breaking of centrality scaling observed for \(v_{\text{dyn}}/\alpha \) not reproduced by models

No significant low-\(p_T \) enhancement observed, not supporting the production of disoriented chiral condensates (DCC)
• Measurement of inclusive charged jets production vs charged particle multiplicity in pp
 ➢ Better agreement with NLO models, compared to LO, though yields overestimated below 20 GeV/c

• From ratios of production cross sections at different R, stronger collimation for high-p_T jets observed

• Self-normalised yields: faster-than-linear increase observed for all values of jet radius R
Recommissioning without beam is progressing well

- **MW2 (week 7):** first large testing focused on **detector calibrations**, with strong development and progresses
- MW approach extended with **Weekly Run Plans**
 - Plan activities by balancing detector standalone testing and exercise Central Systems to achieve long term stability
- **Global runs** done with cosmic data taking and synthetic running (unstable beam)

- Now possible to perform **CRU+CRORC** global runs
- Possibility to run with **intermittent error conditions** using incomplete TF building

Example: 8.5h run with EMC (CRORC) + MFT + MID + TOF + TPC + TRD (CRU)