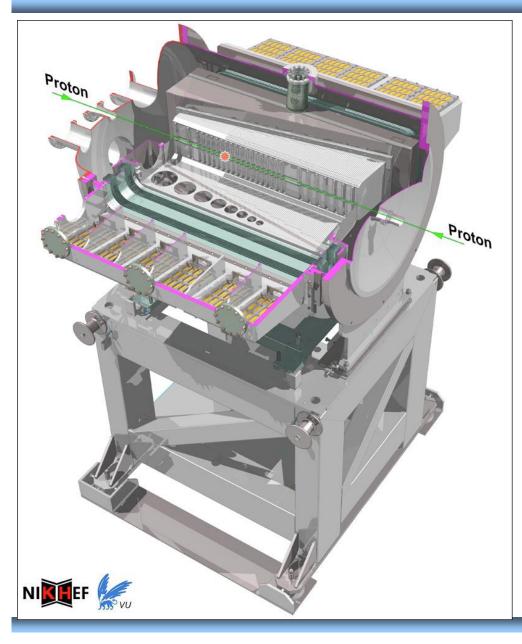


Martin van Beuzekom, Clara Gaspar, Karol Hennessy, Eddy Jans, Malcolm John, Richard Jacobsson, Chris Parkes

LHCb VELO Motion Control

- Intro motion system
- Low level control
- PVSS controls
- •Reviewers comments

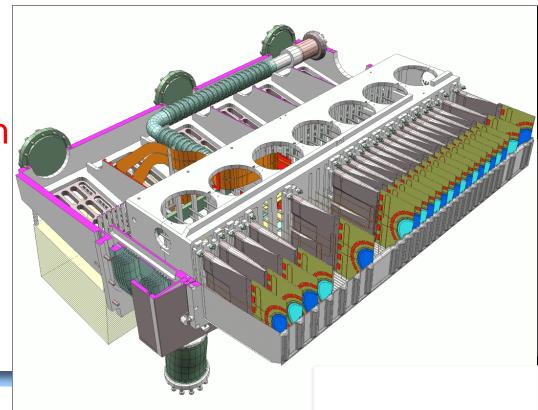

Beam's eye view of the open VELO

Machine Protection Panel Meeting, 11th March 2011

Review Context

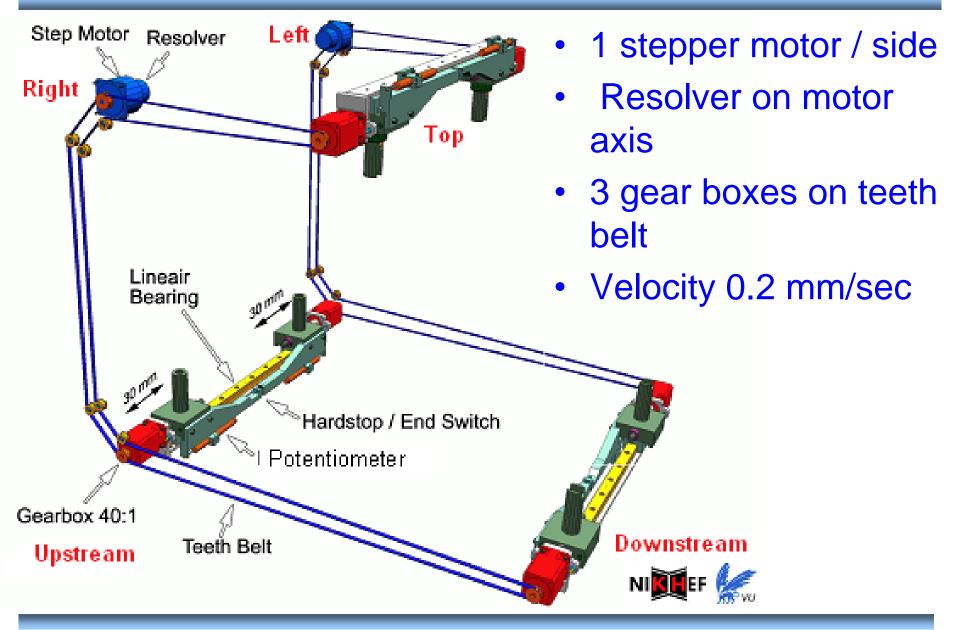
- 2009/2010: VELO group maintained 24hr shift coverage during period of physics beam.
- 2011: move to automated closing overseen by the central LHCb shift crew.
- Aim: to consider readiness of motion control
- Review held 16th November 2010
- Reviewers: Rolf Lindner (LHCb Technical co-ordinator), Stefano Redaelli (machine protection group)
- Recommendations were received and implemented during the shutdown

LHCb VELO: movable Vertex detector

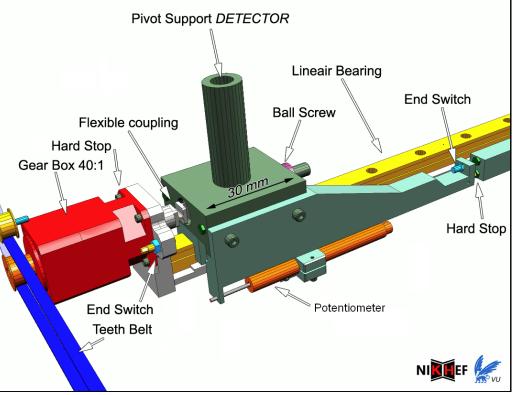


- Vacuum tank with 2 movable detector halves
 - A & C
- Independent movement in horizontal plane (X)
- Common movement in vertical plane (Y)

VELO Position


- Detector retracted during beam injection.
 29mm aperture
 - zemm apenure
- Close detector halves after stable beam.
 Rf foil 5.5 mm from beam
- Centre on beam

 Beam position
 determined per fill with
 detector

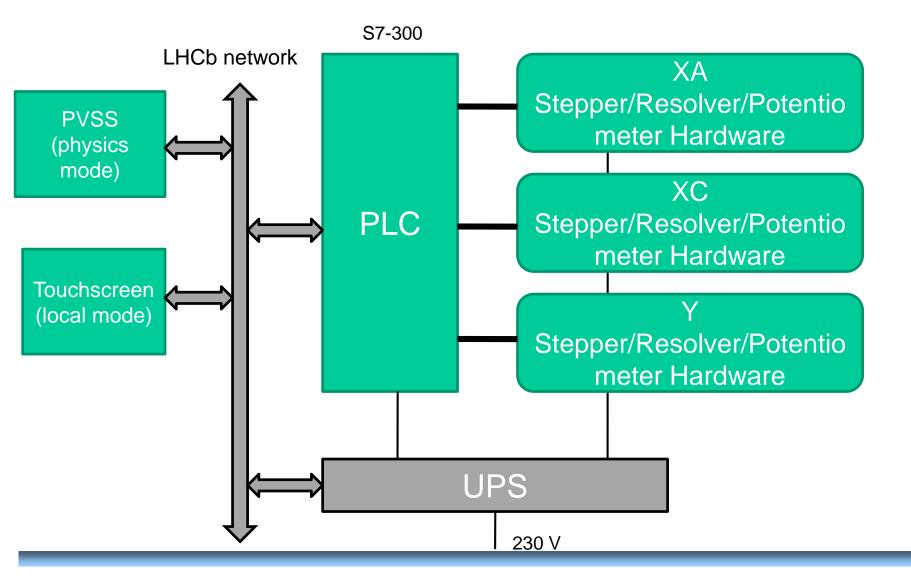


Motion System Hardware & Low Level Control (PLC)

Horizontal Movement Hardware

Horizontal Movement Detail

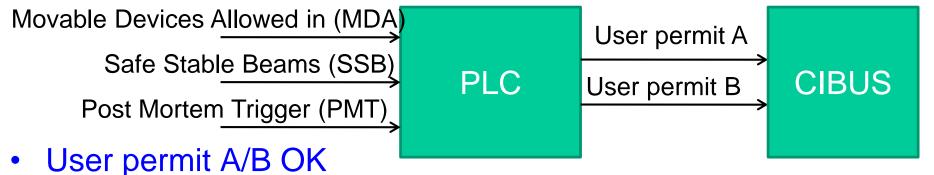
 Switches at 'in' and 'out' position


 'in' switch is for relative position of two sides

 One out switch used for referencing system

Switch accuracy 2µm

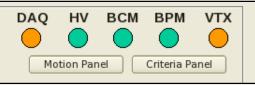
Electronics overview


•Stepper, Resolver, Potentiometer agreement required

General flow of move procedure

- Check system referenced and idle
- Check system on mains (not on UPS)
- Check no relevant alarms / interlocks
- If OK, then set 'lock' (system -> not idle)
- Read stepper, resolver
- Check stepper == resolver == average potentiometer
 - Limits: resolver 50 um, potentiometer 1 mm
- Check requested destination versus limits
- If OK, send move command to stepper-CPU
 - Start timer
 - Wait for command to finish, or time-out
 - Read stepper, resolver, potentiometers: check consistency
 - If OK, 'unlock', end of move procedure

Interlocks to LHC



- If VELO retracted
 - OR
 - If MDA==true
- MDA==false does not prevent PLC to move in (PVSS does)
 - But if MDA==false, moving in the VELO removes beam permit
- Post Mortem Trigger: freezes internal logger
- Other hardware Interlocks, these retract VELO
 - Beam Conditions Monitor, Emergency Retraction Button,
 Power Cut on UPS

Beam Monitoring and PVSS Control

Principal Safety Requirements

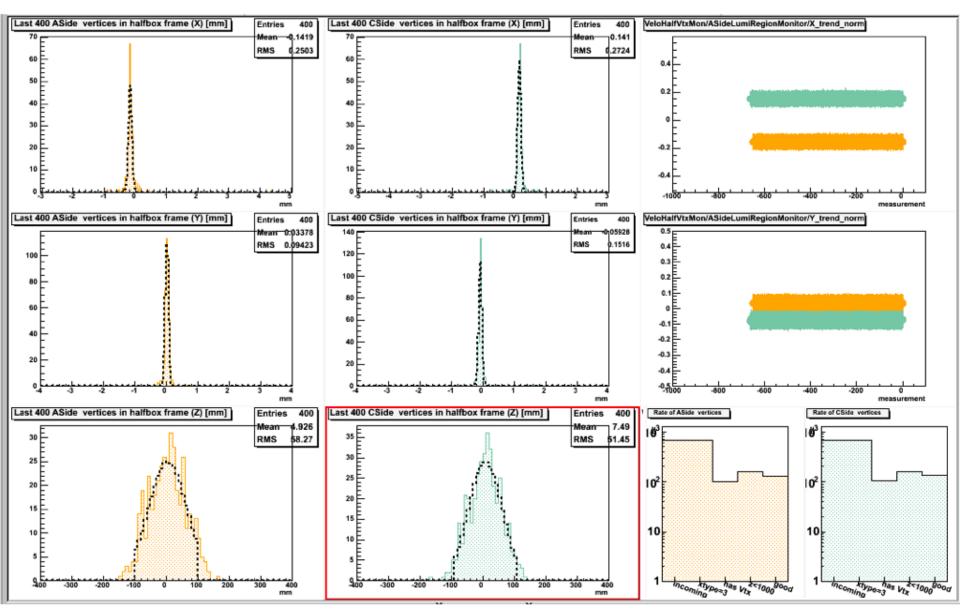
- The VELO safety is primarily provided by the LHC safety systems
- The VELO motion system is not intended to react dynamically to beam problems
- Nevertheless, define a parameter set that represents the environment which the VELO experiences and place requirements on them:
- 1. Require STABLE BEAMS and no persistent alarms from the VELO
- 2. The LHCb beam conditions monitor (BCM) far below dump-beams threshold
- 3. The current in the [biased] VELO silicon should be low
- 4. A measurement of the luminous region (where the beams collide) should be: within the aperture of the machine, consistent with cross-checks, and stable
- 5. The LHC beam position monitors (BPM) should be consistent with the LHCb vertex measurement and be stable in time

6. Review recommendation:

check beam position compared to position at previous closing

VELO Closure Criteria Panel

BPM: last update on 08-Nov-2010 at 11:20:20				ВСМ (%)	BCM (%)		
PV: waiting for Velo fully closed		CTION 🗘		S0.RS2 S0.RS32 S1.RS2 S1.R 0.046 0.018 0.141 0	RS30 .041		
					_		
# Quantity	ActualValue	Criterion	Status	_ BPM (mm)	_		
1 BCM: S0.RS02	0.046 %	< 2.0 %	OK	B1L8(hor) B1L8(ver) B2L8(hor) B2L	8(v		
2 BCM: S0.RS32	0.018 %	< 2.0 %	OK	2.268 -0.831 -1.288 1.7	84		
3 BCM: S1.RS02	0.141 %	< 2.0 %	OK				
4 BCM: S1.RS32	0.047 %	< 2.0 %	OK	B1R8(hor) B1R8(ver) B2R8(hor) B2R			
5 BPM: D(B1L8H)	0.004 mm	< 0.2 mm	OK	-2.574 0.524 1.753 4.2	99		
6 BPM: D(B1L8V)	0.020 mm	< 0.2 mm	OK	B1 Xav B1 Yav B2 Xav B2 Y	Yav		
7 BPM: D(B2L8H)	0.047 mm	< 0.2 mm	ОК	-0.153 -0.154 0.233 3.0			
8 BPM: D(B2L8V)	0.002 mm	< 0.2 mm	OK				
9 BPM: D(B1R8H)	0.003 mm	< 0.2 mm	OK	B1 Xdr B1 Ydr B2 Xdr B2	Yo		
10 BPM: D(B1R8V)	0.010 mm	< 0.2 mm	OK	0.001 0.000 -0.000 0.0	00		
11 BPM: D(B2R8H)	0.031 mm	< 0.2 mm	OK				
12 BPM: D(B2R8V)	0.022 mm	< 0.2 mm	OK				
13 BPM: [B1 Xav]	0.153 mm	< 4.0 mm	OK	Velo Resolvers (mm)			
14 BPM: B1 Yav	0.154 mm	< 4.0 mm	OK	XA XC YAC			
15 BPM: B2 Xav	0.233 mm	< 4.0 mm	OK	29.000 -29.000 0.001			
16 BPM: B2 Yav	3.042 mm	< 4.0 mm	OK	25.000 -25.000 0.001			
17 BPM: [B1 Xdr]	0.001 mm/s	< 0.1 mm/s	OK	– VeloHalves distance (mm) –			
18 BPM: [B1 Ydr]	0.000 mm/s	< 0.1 mm/s	OK	velohalves distance (mm)			
19 BPM: [B2 Xdr]	0.000 mm/s	< 0.1 mm/s	OK				
20 BPM: B2 Ydr	0.000 mm/s	< 0.1 mm/s	OK	0.000 0.000			
21 VTX: XVA + XVC	0.000 mm	< 0.2 mm	OK	Beam Position A-side (mm)	ver		
22 VTX: XA+XVA-XC-XVC - 310um	0.310 mm	< 0.2 mm	NOT OK	Beam Position A-side (mm)			
23 VTX: SXVA	0.100 mm	< 0.6 mm	OK	XVA YVA ZVA +i	ime		
24 VTX: SYVA	0.100 mm	< 0.6 mm	OK	-1000.000 -1000.000 -1000.000 ela			
25 VTX: SXVC	0.100 mm	< 0.6 mm	OK				
26 VTX: SYVC	0.100 mm	< 0.6 mm	OK		(OFOR		
27 VTX: D(XVA)	999.000 mm	< 9999.0 mm	OK	-1000.000 -1000.000 -1000.000			
28 VTX: D(YVA)	999.000 mm	< 9999.0 mm	OK				
29 VTX: D(XVC)	999.000 mm	< 9999.0 mm	OK	Beam Position C-side (mm)——			
30 VTX: D(YVC)	999.000 mm	< 9999.0 mm	ОК	XVC YVC ZVC			
31 HV: bias current (A-side)	0.000 uA	< 1150.0 uA	OK	1000.000 1000.000 1000.000			
32 HV: bias current (C-side)	0.000 uA	< 1620.0 uA	OK				
				SXC SYC SZC			
				-1000.000 -1000.000 -1000.000			

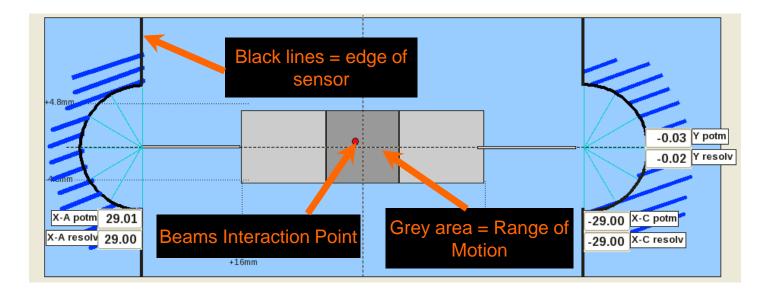

Red =failure, Green = OK, Blue = Not checked

Collision Vertices

- Beam position from real time reconstruction of collision vertices with detector
 - Tracks and vertices reconstructed and displayed in LHCb online monitoring system
 - Gaussian fits performed and positions transmitted as PVSS data points
- This determines the position to which the VELO closes, and checks for any drifts during fill
- New vertex position obtained approx. every 5s
- If the data taking is interrupted rely on BPMs
 Up to 15minutes, then open

Screenshot of Online Vertex Monitor

• The Gaussian fit is superimposed (until next 400 vertices arrive) to permit visual check of the fit


VELO Closing Manager

- Closing proceeds in several stages
 Redetermine vertex position at each stage
- Requires user confirmation to start (29mm), and at 5mm from vertex

	LHCbSystemStateVELO_PositionOPEN	Criteria Checks
	VELO Closing Manager Motion ALLOWED FULLY OUT Motion Panel	BPM VTX Criteria Panel
.og Messages	Beam Position Motion System Position X -0.60 mm XA 29.01 mm XC -29.03 Y -0.04 mm Y -0.02 mm Status: ELOG ELOG ELOG	mm
	Do you want to move the VELO to: XA = 13.395mm, XC = -14.605mm and Y = -0.044mm ReCheck Ok	v7.2 Position of Motion system in absolute frame

VELO Motion Graphic

• A Motion graphic panel with a visual representation of the VELO halves and the beam position

- Red dot shows beam spot position as calculated using VELO monitoring
- Grey area shows range of motion. Left VELO half can move as far as right hand side of dark grey box and vice-versa. [comment: needs updating for new limits]

Main Review Recommendations & Summary

2010 Experience

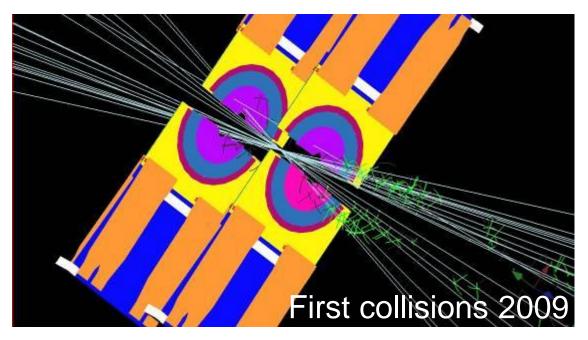
- Efficient data taking in LHCb
- Highest precision vertex detector at LHC
 - Proximity to beam critical to LHCb physics potential
 - Best point 4µm resolution
- PVSS motion control evolved over 2010

 No major issues with motion control operation
- Closing takes approximately 5 minutes

FULLY ON: 89.6 (%) HV: 0.8 (%) VeLo Safety: 2.3 (%) DAQ: 5.2 (%) Deadtime: 2.0 (%)

Main Review Recommendations -1

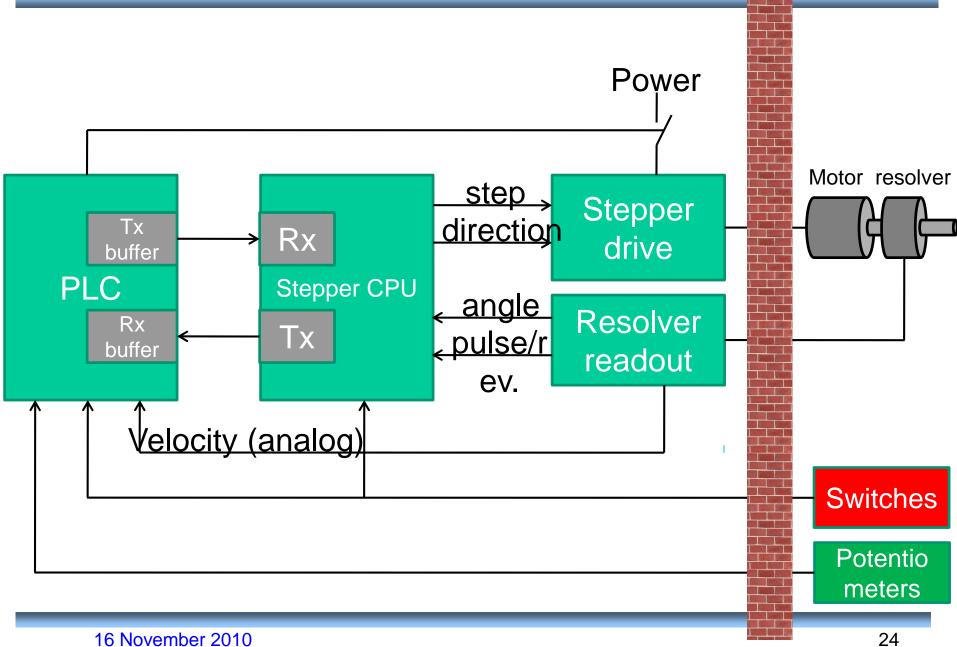
- Document available in EDMS 1111979
 - Full replies made to referees this week
- Main recommendation: change of horizontal position limits when moving 'across' zero.
 - Implemented and tested in PLC during shutdown
- If position beyond limits obtained motor should be stopped, consider beam dump
 - Implemented and tested in PLC.
 - Motor is stopped, and also power cut.
- Check determined vertex position with previous value

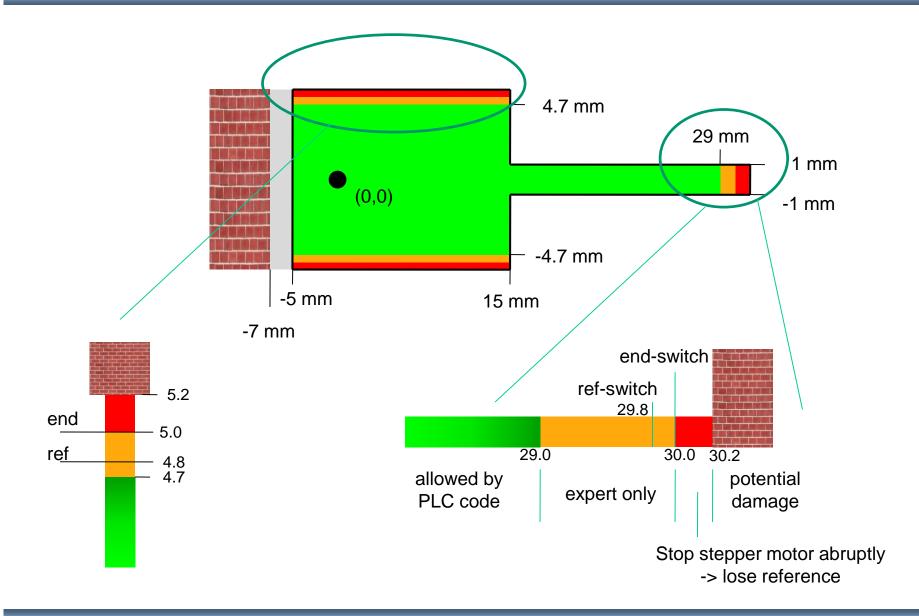

 Implemented in PVSS during closing

Main Review Recommendations -2

- Suggest slow speed of vertical motion
 - Will consider, but not possible in this shutdown.
- Training/closing support for LHCb Shift Leaders
 - Training performed
 - VELO piquets will support closings of the VELO for start of 2011
- Velo expert present during van der Meer scans – Agree.
- Provide write-up of effect of hardware failures on LHC operations
 - Done.
- Present review summary at this meeting

Summary

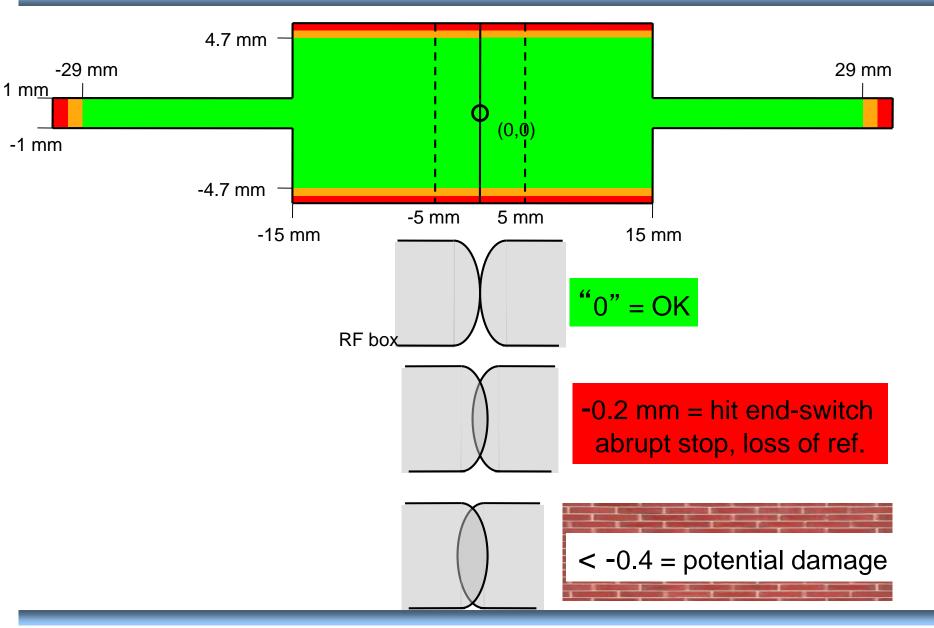

- First successful year of VELO motion operation
- Review proposed a number of changes, the main ones have been implemented during the shutdown
- Many Thanks again to the referees
- Looking forward to a successful year of data taking


Backup

Chris Parkes

HW per axis

Movement limits, single side



relative limits (design) 4.7 mm -29 mm 29 mm 1 mm (0,0)-1 mm -4.7 mm -5 mm 5 mm -15 mm 15 mm "0" = OK 2 mm RF box -0.2 mm = hit end-switch abrupt stop, loss of ref. < -0.4 = potential damage

16 November 2010

Motion review / MvB

relative limits (in reality)

Motion review / MvB