

ALICE overview³:

analyse the (recent) *past*, commission the here and *now*, conceive and develop the *future*

A. Recent past : *run-2 recent results*

- B. Here and now : upgrades of LS2 and nascent run 3
- C. Future : casting ALICE grounds for Run4, for Run 5

Sources :

- Quark Matter 2022 "press release" (alice-collaboration.web.cern.ch/Quark_Matter_2022)
 - QM, ALICE overview, Maximiliano Puccio (indico.cern.ch/event/895086/contributions/4314623/)
 - QM, LHC exp upgrades, Jochen Klein (indico.cern.ch/event/895086/contributions/4615176/)
 - + ALICE Spring 2022 Preliminaries (alice-figure.web.cern.ch/node/21442)
- ALICE Research Review Board 2022-04
- LHCC March 2022 open session (indico.cern.ch/event/1126938/)

.1 – ALICE : collaboration

Spokesperson : Currently : Luciano Musa (CERN) 3-year term: 2020-01 - 2022-12

108101 95

Switzerland Poland

⁵lic of Koreg letherlands

China China

United States

India

Russia France

ţa,

300

250

200

150

100

50

Sermany

243

224

Next : Marco Van Leeuwen (NIKHEF) Elected by Collaboration Board on 2 March 3-year term: 2023-01 - 2025-12

60 58 55

ch Republic

Thailand

Brazi Rom_{aniā} South Afric

Japan Mexico Norway Pakistan

ALICE Members

United Kingdom

Slovak Republic

2022:

Croatia

Ikrain_é Malta Sreece

Hungary Denmark Sweden Bweden ndonesia Austria Finland Turkey

40 Countries,

^{lulgaria}

'i Lanka

3

174 Institutes (including 18 Associates)

1954 Members, 1012 Scientific Authors

1012 Scientific Authors :

- 578 PhD Physicists
- 56 Senior Engineers
 - 379 PhD Students

angladesf

⁴²erbaija

.2 – ALICE : ALICE-1 set of subdetectors

•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					л		1		~	•	1				
				2	4		Ι		J	5	I				
1											_	-	-	-	

Part A – turn and look back

LHC running plan

-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	
					~			,		-	-					
				1	h		1			ĸ						
					~	·	'		•	-						
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

-	-				-	-	-				-	-	-	-	-	1
					_	,		,		`	1					
					1		1			3						
					-		'									
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

- <u>ALICE objectives for Runs 1+2</u>: 1 nb⁻¹ in Pb-Pb + "track-equivalent" \mathscr{L}_{int} in pp
 - pp campaigns at reference \sqrt{s}
 - p-Pb campaigns

-	-	-	-	-	-	-	-		-	-	-	-	-	-	
				0			1		h	1					
				ð)	/			3						
-	-	-	-		-	-	-	-	-	-	-	-	-	-	
					8	8	8 /	8 /	8 / 3	8 / 3	8 / 31	8 / 31	8 / 31	8 / 31	8 / 31

II.₂ – Scientific production : publications, conferences

- 388 publications submitted to arXiv (and thus, to journals) https://alice-publications.web.cern.ch/submitted
 - 2022 > 14 submissions 2021 = 33 submissions 2020 = 44 submissions 2019 ...

NB :

ALICE white paper runs 1+2 *The ALICE experiment – A journey through QCD* ≈ 230 pages in preparation (collaboration round 1)

 ~ 300 talks per year in conferences
 usually linked to ALICE preliminaries, https://alice-figure.web.cern.ch/index.php/preliminary_fig_pub

11 / 31

III.1 – An ALICE glimpse : Charmed-quark diffusion in QGP

ALICE, arXiv:2110.09420, R_{AA} ALICE, arXiv:2005.11131, v₂, v₃

ALICE, Pb-Pb 2018 data, D°, D⁺, D* E_{loss} (*c* quark) : constraints from $R_{AA} + v_2 + v_3 \rightarrow 1.5 < 2\pi D_s T_c < 4.5$ (hyp. : $T_c \approx 155$ MeV)

III. 1 – ALICE glimpse : (*c*,*b*) flavours Vs in-medium E_{Loss}

ALICE, arXiv:2202.00815

III.2 – **Glimpse** : charm hadronisation, charm baryons

ALICE, arXiv:2112.08156 ALICE, arXiv:2111.11948

Enhancement of Λ_{c}^{+}/D^{0} at intermediate momentum, Further increased, while going from pp to larger systems but No strong multiplicity dependence of $dN/dy (p_{T}>0)$

i.e. change in the dynamics rather than in the pT-integrated chemistry

- 1. Baryon anomaly in charm sector very much similar as for (*u*,*d*,*s*) sector, like p/π , Λ/K^0s
- 2. favour charm recombination?at least sthg with happening with baryons...
- 3. modified p_{T} -integrated ratio w.r.t. LEP e+e⁻ value

III.3 – **Glimpse** : strangeness enhancement Vs forward energy

Strangeness enhancement is <u>anticorrelated</u> with forward E_{ZDC} , even at fixed midrapidity multiplicity \rightarrow Early stages (large rapidity gap) matter in strangeness enhancement

QM 2022, https://indico.cern.ch/event/895086/contributions/4736386/

11.4 – **Glimpse** : antimatter-matter assymetry at LHC energies

http://alice-figure.web.cern.ch/node/21620

400

⟨N_{part}∕

16 / 31

450

III. $5 - \text{Glimpse} : {}^{3}\text{He}$ absorption in ALICE // in the Galaxy

2. ALICE measured the ³He absorption cross section in the detector material (ALICE as target...) for the first time, at low momentum 1.17 < pT < 10 GeV/c

3. \rightarrow experiment-driven estimate of absorption probability of anti-nuclei from dark matter decays and from cosmic-ray background in the Galaxy 17/31

Antonin.MAIRE@cern.ch - IPHC Strasbourg / QGP France 2022

ALICE, arXiv:2202.01549

Part B – LHC run 3, here we go !

LHC running plan

IV.2 – ALICE-2 : TDRs for run 3 detectors

IV.3 – ALICE-2 upgrades : overview

TIME PROJECTION CHAMBER (TPC) UPGRADE

New GEM (gas electron multipliers) technology replaced the old wire chambers to significantly increase the readout rate of the TPC.

gy replaced rs to the readout

NEW INNER TRACKING SYSTEM (ITS)

Seven layers comprising a total of 12.5 billion monolithic active silicon pixel sensors distributed over a 10m² surface area, the largest pixel

detector ever built.

NEW MUON FORWARD TRACKER (MFT)

Five disks of monolithic active silicon pixel sensors, installed in front of the muon spectrometer to extend precision measurements to the forward rapidity region.

NEW READOUT SYSTEM

The new readout system is designed to handle increased data throughput by combining all the computing functionalities needed in the experiment.

NEW FAST INTERACTION TRIGGER (FIT)

Combining three detector technologies, the FIT detector serves as an interaction trigger, online luminometer, indicator of the vertex position and forward multiplicity counter.

NEW BEAMPIPE WITH A SMALLER DIAMETER (36.4 mm)

The vacuum tube that carries protons and ions to the collision point inside the detector has an 870-mm-long central beryllium section that has an inner radius of 18.2 mm and measures 0.8 mm in

ċ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,
								,								
ι.)	1		1			2	1					
			4	<u> </u>	I		1)						
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

IV.4 – From LS2 (2019-21) into Run 3 (2022-...) : on time !

IV.5 – Commissioning : pilot beam oct 2021, pp \sqrt{s} = 900 GeV

pp event from pilot beam 2021

muon splash (μ FT, μ CH, μ ID) from TED shots (Apr 2022)

IV.6 – ALICE-2 continuous readout ? : what it costs...

NB : Time frames \approx **10 ms** Vs bunch spacing at LHC \approx **25 ns**

Part C – run 4+5 preparation and perspectives

LHC running plan

V.1 – ALICE 2.1 : FoCal, keys + physics cases

V.1 – ALICE 2.1 : FoCal

Test beam in September 2021

- FoCal-E: 2 pixel (ALPIDE) layers, 1 pad layer
- FoCal-H: complete prototype, commercial readout system
- Full-pixel prototype: EPICAL-2

Next steps:

- Further laboratory tests of pad readout
- Construct full FoCal-E tower prototype
- 2 test beams planned in 2022 (June for pad electronics, Sep/Oct for full demonstrator)

HCAL prototype

SPS Test beam Sep/Oct

27 / 31

V.2 – ALICE 2.1 : ITS-3, keys + physics cases

+ Λ_{b}° ... + Λ_{c} n (c-deuteron), n Λ_{c} n (c-triton) ?

• "strangeness tracker", 1st implementat" $(\Xi^{\pm}, \Omega^{\pm}, \Sigma^{\pm})$

Antonin.MAIRE@cern.ch - IPHC Strasbourg / QGP France 2022

V.₂ – ALICE 2.1 : ITS3

Move from 180 nm CMOS technology to 65 nm (Tower foundry) → Wafer-scale chip, thinned (< 50 µm) + to be bent

Beam test of *bent* ALPIDE chips (i.e. ITS2 chip 50-µm thick, 180 nm technology) (*arXiv:2105.13000*)

<u>Project milestones</u> :

- . Eol ALICE-PUBLIC-2018-013
- . Lol CERN-LHCC-2019-018
- . 2019 : LHCc blessing for R&D
- → Engineering run 2 = 2022-05, on-wafer stitching among chips
 . TDR by spring 2023

Mechanical integration cooling test

29 / 31

VI.1 – ALICE 3 : Letter of Intent, (Run 5, >2032)

Conclusions and Prospects

It's likely all about time *Time lapse ... Timing ... Time frames ... Timeline ...*

31 / 31

Annexe 1 Annexe 2

A.1 – Synopsis : ITS1 Vs ITS2 Vs ALICE3

	ITS-2 [<i>TDR</i>]			ITS-3 [<i>Lo</i>	[]		ALICE3 [<i>Lol</i>]			
Période LHC	Run III + IV	(2022-31)		Run IV (2	029-31)		≥ Run V (>2032)			
Nombres de couches	3+4			3 (+4 ITS-	2)		O(3+8)			
R _{tube}	1,82 cm			1,6 cm			(2,9)			
$r_{L0} / r_{L1} / r_{L2} \dots r_{Last}$ (cm)	2,3 / 3,2 / 3,9	39,3		1,8 / 2,4 /	3,0 39,3		0,5 / ≈	100		
Champ magnétique B _{solénoïde}	0,2 ou 0,5 T			0,2 ou 0,5	Т		0,2 à 2 T	,		
Matière par couche (x/X_0)	0,3 % à 0,8 %	,		0,05 % à 0	,8 %		0,1 % à 0,8 %			
Taille d'un pixel (μm²)	≈ 30 x 30			≈20 x 20 (+ 30 x 30)		≈10 x 10 (+ 30 x 30)			
CMOS technology	180 nm			65 nm			65 nm			
Résolution temporelle	≥ 2-5 µs			2-5 μs			≤ 1 μs			
Résolution spatiale	5 µm			5 µm			≈ 3-5 µm			
Couverture en ŋ	η < 2,0 à 1,3	3		η < 2,0 à	1,3		η < 4,0			
	1	0,1	0,05	1	0,1	0,05	1	0,1	0,05	
	98 %	60 %	10 %	98 %	75 %	20 %	98 %	75 %	20 %	
Coûts totaux (R&D + Constr.)	≈ 15 MCHF			5,3 MCHI	F		≈ 141 MCHF			
Nb d'instituts / Nb de pays	30 / 16			30 / 16			(> X signataires)			

By 2032, \approx any inclusive identified measurements \approx done.

→ Stakes = multi-differential and/or correlated measurements (vn, HBT, double production, f(mult), f(event activities) ...)

QGP physics = a particle of interest wrt to its context, i.e. QCD surroundings in the event

- \rightarrow Need a focus on :
 - all identified particles (*u*,*d*,*s*,*c*,*b*)
 - access to [ultra]low pT ([0.05-0.15]- O(10) GeV/c)
 - $\forall p_{T}, \forall y, AxEff(tracks) \approx 100\%$
 - ideally on an event-by-event basis,
 - made available through huge integrated luminosities, both in AA and in pp

Define how the ideal experiment(s) should look like...

B.₂ – HL-LHC QCD+QGP : for which physics cases ?

• <u>Degrees of freedom</u> within the QGP via LQCD (deconfinement dof + transition + chiral restoration)? - net quantum-charge fluctuations at $(\mu_{-} = 0)$

$$\rightarrow \mathbf{Q} : (h^+ - h^-), \ \mathbf{B} : (\mathbf{p} - \overline{\mathbf{p}}, \Lambda - \overline{\Lambda}, ...), \ \mathbf{S} : (\mathbf{K}^+ - \mathbf{K}^-, \Lambda - \overline{\Lambda}, ...)$$

- direct e^+e^- ($m_{inv} \in [2-5] \text{ GeV}/c^2$) to access initial state (cf. Ollitrault, Winn *arXiv:2104.07622*)

- Probe the effect of <u>chiral symmetry</u> restoration ? - e^+e^- at $m_{inv} \approx m(\rho)$ (~0.8 GeV/ c^2) - ultra-low $p_T \pi^{\pm}(p_T < 0.05-0.1 \text{ GeV/c})$
- Evolution of the <u>thermodynamic param. (*T*, elec. conductivity, ...)</u> within the system ? - Thermal e^+e^- ($m_{inv} < 0.05-3 \text{ GeV}/c^2$)
- Roots of <u>collectivity</u> (hydrodynamisation, chem. equilibration, thermalisation) ?
 u,d,s,c,b = f[event-activity (mult, spherocity, *R*_T, ...) + system pp, pA, AA]
- <u>Alterations of parton shower</u> by the medium ?
 PID decomposition within *flavour-tagged* jets
- Interplay between mechanisms of <u>hadronisation</u>?
 - $\Xi_{CC}^{2+}(ucc), \dots, \Omega_{CCC}^{2+}(ccc)$ $\chi_{c1}(3872)(ccuu), T_{CC}^{-+}(ccud)$