« South rose » of Saint-Gatien cathedral, Tours

CNS overview Selection of new results from the Quark Matter'22 campaign

Cathedral of Modern timeS

Florian Damas (florian.damas@cern.ch) Laboratoire Leprince-Ringuet, École Polytechnique

Rencontres QGP France 2022, Tours

Key features

CMS

- Iarge acceptance & hermetic apparatus
 - o barrel region: |η| ≤ 1.5
 - endcap region: $1.5 \leq |\eta| \leq 3$
- fast triggering on rare signals
- high tracking resolution

Silicon trackers ($|\eta| < 2.5$)

Compact Muon Solenoid

JINST 3 (2008) S08004

Forward hadron calorimeters $(3 < |\eta| < 5)$ used for event and centrality selection

CMS DETECTOR

Total weight	:14,000
Overall diameter	:15.0 m
Overall length	: 28.7 m
Magnetic field	· 3 8 T

tonnes

Heavy ion physics program

- Initially focusing on hard probes based on the trigger performance (jets, leptons, high-p_T photons)
- Extending the scope by recording more and more minimum bias data (~5B events in 2018)
- Compilation of results

CMS Integrated Luminosity Delivered, PbPb+pPb

<u>Flagship example</u>: constraining the initial state with the Z boson

Investigating the dynamics of heavy quarks with flow measurements

Boats flowing towards the Chateau de Chenonceau

Azimuthal anisotropy of D⁰ mesons

Prompt vs non-prompt D⁰ flow

- mass ordering (the lighter the hadron, the greater its flow)
- weaker centrality and p_T dependence for $b \rightarrow D^0$

Non-zero v₃ measured in all centrality intervals for $p_T \sim 5$ GeV

J/Ψ flow: prompt vs non-prompt

CMS-PAS-HIN-21-008

Significant v_2 up to high p_T (~30 GeV)

- ▶ prompt $J/\Psi > b \rightarrow J/\Psi$
 - redifferent in-medium effects for charm and bottom quarks
- smaller for the most central collision events

First v₃ measurement with separate components

- compatible with 0
- ► b $\rightarrow J/\psi v_3$ consistent with result for b $\rightarrow D^0$

► v₂: prompt $\Psi(2S) \gtrsim 0.1 > \text{prompt } J/\Psi$

▶ v₃ signal compatible with 0 within large uncertainties (backup)

First measurement of $\Psi(2S)$ flow!

CMS-PAS-HIN-21-008

Heavy-flavour elliptic flow

figure available here

Comprehensive family picture

- steep increase at low p_T following mass hierarchy hydrodynamic regime: light > charm > bottom
- maximum reached for $3 < p_T < 6$ GeV light \gtrsim prompt D⁰ > prompt J/ Ψ > **b** \rightarrow hadrons coalescence of heavy quarks with light ones carrying flow!
- convergence towards plateau above 8 GeV similar behaviour and non-zero v₂ at high p_T originating from universal energy loss?

$J/\Psi > \Upsilon(1S) \sim 0$ in PbPb collisions

No elliptic flow for $\Upsilon(1S)$

CMS-PAS-HIN-21-001

Same findings in high-multiplicity pPb events

- ► first Y(1S) v₂ measurement consistent with 0
- J/Ψ flow magnitude similar to the PbPb case

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-08 23:00:35.173312 GMT Run / Event / LS: 326392 / 3003879 / 56

Observation of Y(3S)

Event display of a $\Upsilon(1S) \rightarrow \mu\mu$ candidate

Signal barely visible despite the large dataset (vertex and dimuon variables)

from flow measurement, PLB 819 (2021) 136385

Observation of $\Upsilon(3S)$ in HIC!

CMS-PAS-HIN-21-007

Re-discovery of the sequential suppression

- ► Significant Y(3S) yield + precise Y(2S) measurements in whole phase space
- Excited states suppressed in all centralities, much more than Y(1S) [PLB 790 (2019) 270]
- \blacktriangleright Y(3S) more suppressed than Y(2S) for the 0–30% most central events (double yield ratio)

Re-discovery of the sequential suppression

- Significant $\Upsilon(3S)$ yield + precise $\Upsilon(2S)$ measurements in all p_T bins < 30 GeV
- Clear ordering: $R_{AA} \Upsilon(1S) \gg \Upsilon(2S) > \Upsilon(3S)$
- $\Upsilon(3S)$ more suppressed than $\Upsilon(2S)$ in all p_T intervals (double yield ratio)

CMS-PAS-HIN-21-007

Comparison with state-of-the-art models

Comover interaction model [JHEP 10 (2018) 094] No regeneration contribution **Coupled Boltzmann equations** [JHEP 01 (2021) 046] No regeneration for $\Upsilon(3S)$

None of them can reproduce the data consistently over the 3 states! (more details in backup)

Open-quantum system [PRD 104 (2021) 094049] Call for CNM effects? Limit of the EFT formalism?

Y(3S)-to-Y(2S) double ratio

Cancellation of uncertainties common to both states (nPDF in calculations, correlated systematics) ▶ regeneration missing for Y(3S) in Coupled Boltzmann equations [JHEP 01 (2021) 046] • $\Upsilon(3S) \approx \Upsilon(2S)$ expected from quantum jumps in OQS+pNRQCD [PRD 104 (2021) 094049]

Dijet cathedral overlooking the underlying city

Jet quenching studies

CMS

Selection of dijet events containing back-to-back leading and subleading jets

Positive v₂, increasing from the most central to more peripheral collisions

path-length dependence of energy loss

Jet azimuthal anisotropies in dijet events

CMS-PAS-HIN-21-002

Higher-order coefficients compatible with zero

dijet azimuthal distribution not impacted by medium density fluctuations

Radial profile of b-tagged jet

b vs inclusive jet shape modification

- excess at the verge of the cone greater for b jets than for inclusive jets

Redistribution of the transverse momentum from small to large radii stronger towards more central collisions (jet-medium interactions)

Two-photon interactions in ultraperipheral collisions

Observation of $\gamma\gamma \rightarrow \tau\tau$ in UPC, CMS physics briefing

Enhanced rare processes for precision SM physics and for research beyond

CMS Experiment at the LHC, CERN Data recorded: 2015-Dec-06 21:41:27.033612 GMT Run / Event / LS: 263400 / 88515785 / 849

CMS-PAS-HIN-21-009

 ν_{τ}

CMS Observation of tau lepton pair photoproduction

Difference in azimuthal opening angle between τ_{μ} and τ_{3prong} candidates (back-to-back signature) reprint distribution postfit: $N_{signal} = 77 \pm 12$ events

CMS-PAS-HIN-21-009

Measured fiducial cross section in agreement with SM calculations

Limits on the anomalous magnetic moment

CMS

'	
F	DELPHI , ee→e(γγ→ττ)e 68% CL, Eur. Phys. J. C 35 (2004) 159
k	CMS <i>Preliminary</i> , PbPb \rightarrow Pb ^(*) ($\gamma\gamma \rightarrow \tau_{\mu}\tau_{3\text{prong}}$)Pb ^(*) 68% CL, 0.4 nb ⁻¹
F	CMS Phase 2 Projection Preliminary PbPb \rightarrow Pb ^(*) ($\gamma\gamma \rightarrow \tau_{\mu}\tau_{3\text{prong}}$)Pb ^(*) , 68% CL, 13 nb ⁻¹ Based on rate-only-analysis, assuming 4% uncertainty
۰.۱ ۵ ۵ a _t	.1

- most-precisely measured quantity in Nature for the electron and the muon
- tau: best constraint to-date from DELPHI **•** a_{τ} derivation from $\gamma\gamma \rightarrow \tau\tau$ cross section and lepton decay kinematics
- CMS limit: (-8.8 < a_{τ} < 5.6) x10⁻² at 68% CL
- Projection with Run 3 & 4 luminosity competitive with LEP: $(-1.8 \pm 1.7) \times 10^{-2}$

► 2018 data analysis with additional decay channels (+ dimuon for control) combination with ATLAS in the future?

HonexComb: one collaboration to gather them all²⁴

STRONG-2020 work package: cross-experiment combination of heavy ion measurements at the LHC

- First outcome: combination of light-by-light scattering cross section measurements [arXiv:2204.02845]
- CMS result scaled down to a fiducial region common with ATLAS (different photon E_T kinematics)
- average estimated with BLUE to account for correlations and their related assumptions
- **10% improvement**, but still statistically dominated CMS update with 2018 data coming soon!
- On-going projects (indico page)
- total charm cross section
- quarkonium feed-downs (driven by me :)

Now that Quark Matter is over, all our efforts are devoted to the **PbPb data taking preparation**.

Upgrades during LS2, summarised on the CERN webpage

- new beam pipe made of aluminium alloy (reduction of the activation by a factor of five)
- significant computing improvements (reconstruction on GPU, raw data size reduction)

Most of these activities were carried out now to anticipate the operations for the HL-LHC era, a.k.a the Phase-II upgrades (cf. Matthew's talk).

Everything will come from the luminosity increase r projections for Run 3 & 4 [Yellow Report].

Installation of prototype GEM chambers in the endcap region (muon detection redundancy)

CMS Experiment at the LHC, CERN Data recorded: 2021-Nov-01 00:20:45.992512 GMT Run / Event / LS: 346509 / 28321286 / 30

First event with a track segment reconstructed in the newly-installed GEM detectors

Test pp collisions at 900 GeV - Nov 2021

CMS Experiment at LHC, CERN Data recorded: Thu Apr 28 13:24:34 2022 CEST Run/Event: 350968 / 2093 Lumi section: 87

« Beam splash » event recorded last week

Early production, (very) fast decay unaffected by medium interactions

CMS

Constraints on the initial state with Z boson [PRL 127 (2021) 102002]

Idea: N_Z / (σ_{NN}^{Z} x N_{events}) as effective nucleon–nucleon luminosity proxy (instead of T_{AA})

- does not rely on Glauber modeling
- incorporates the collision geometry and centrality selection effects observed in peripheral events 1.7 nb⁻¹ (5.02 TeV PbPb) 0.6 $60 < m_{\parallel} < 120 \text{ GeV}$ 0.55 0.5 (qu) 0.45 Z -1_0.35 0-90% data HG-PYTHIA scaled by 0-90% 0.25 <u>Data</u> Model .2 **0.8**E 80 20 0–90 60 40

Centrality (%)

Flow measurements for charmonia

- Quarkonium suppression from scatterings with surrounding particles in the final state
- nCTEQ15 parametrisation for initial-state modification
- Most comprehensive picture to reproduce data in both pPb and PbPb collisions!

Comover interaction model [JHEP 10 (2018) 094]

No regeneration for $\Upsilon(3S)$

Coupled Boltzmann Equations [JHEP 01 (2021) 046]

Continuous dissociation and recombination of heavy-quark pairs through the QGP evolution 2+1D viscous hydrodynamics for medium description, EPPS16 nPDF for initial HQ modification

Breakdown of NRQCD calculations at high p_T ?

Open-quantum system [PRD 104 (2021) 094049]

- Continuous dissociation and recombination through the QGP evolution (Linblad equation) 3+1D anisotropic hydrodynamics to model the bulk expansion
- Call for CNM effects? Late-stage interactions? Vacuum-like evolution for T < 250 MeV</p>

Light-by-light scattering at the LHC

Exclusive $\gamma \gamma \rightarrow \gamma \gamma$ process occuring

- via charged-particle box diagram (LO in QED)
- from the decay of an hypothetical axion-like particle (ALP)
- sensitive channel to BSM physics

Measurements dominated by statistical uncertainties

- CMS result based on the 2015 dataset (0.39 nb⁻¹)
 update with 2018 sample coming soon!
- ATLAS analysis of full Run 2 data (2.2 nb⁻¹)
 most stringents limits for 6 < m_a < 100 GeV
- experiments share the same phase space
 let's combine them!

Exclusion limits on ALP production [JHEP 03 (2021) 243]

