

Event 924938 Run 168926 Tue, 01 Dec 2015 19:34:07

LHCb overview

Óscar Boente García 02/05/2022 Rencontres QGP France, Tours boente@llr.in2p3.fr

The LHCb experiment

- One-arm spectrometer at LHC fully instrumented in $2 < \eta < 5$
 - Tracking system with excellent momentum resolution
 - Excellent hadron and muon ID
 - Precise vertex reconstruction, for primary and secondary vertices
- Calorimeters ECAL, HCAL
 trometer fully
 p-rapidit Flexityle 2rigger,5down to low p_T

LHCb <u>JINST 3 (2008) S08005</u> LHCb performance <u>IJMPA 30 (2015) 1530022</u>

Óscar Boente García

LHCb overview

hadron PID

muon system

lumi counters

HCAL ECAL tracking 10

10

10

10

The LHCb experiment

- SMOG system: inject gas inside LHC vacuum, measure collisions between beam and gas nuclei at rest
- Run1&2: noble gas only (He, Ne, Ar)
- $\sqrt{s_{\text{NN}}} = 69$ to $110 \,\text{GeV}$, between SPS & RHIC, around $-3.0 < y^* < 0.0$ in cms
- Luminosity measured with *pe* elastic scattering events

3

LHCb datasets from Run1&Run 2

 Reconstruction limited in PbPb up to 60 % centrality

The LHCb Upgrade I

Óscar Boente García

02/05/2022

Selection of recent LHCb results (previous LHCb overview in rencontres QGP)

Coverage in (x, Q^2)

- LHCb has a unique capabilities to study nuclear structure with a wide (x, Q^2) coverage
- Access to the saturation and the high-x regions of nuclei

7

Pb

LHCb constrains in nPDFs

- LHCb D^0 production in pPb at 5 TeV: <u>JHEP 10 (2017) 090</u>
- Effect on recent nNNPDF3.0 (arXiv:2201.12363)
- Data also considered in EPPS21

Óscar Boente García

LHCb overview

02/05/2022

D^0 production in *p*Pb

New

• New measurements of D^0 production in pPb

- Using sample x20 larger than previous measurement (<u>JHEP 10 (2017) 090</u>)
- Finer binning and extended kinematic range to $p_{\rm T} \in [0,30] \, {\rm GeV}/c$

Óscar Boente García

LHCb overview

02/05/2022

9

D^0 production in *p*Pb

LHCb-PAPER-2022-007 (in preparation)

- Forward-to-backward ratio: $R_{\rm FB}(y^*, p_{\rm T}) = \frac{d^2 \sigma_{p\rm Pb}/dp_{\rm T} dy^*}{d^2 \sigma_{\rm Pbp}/dp_{\rm T} dy^*}$
- Comparison with HELAC-Onia predictions with EPPS16 and nCTEQ15 weighted with LHC D measurements
- Discrepancy at high $p_{\rm T}$ with reweighted nPDF predictions
 - Additional effects beyond nPDF?

D^0 production in $p\overline{Pb}$

LHCb-PAPER-2022-007 (in preparation)

- Nuclear modification factor: $R_{pPb} = \frac{1}{A} \frac{d^2 \sigma_{pPb} / dp_T dy^*}{d^2 \sigma_{nn} / dp_T dy^*}$
- Reference *pp* cross-section obtained from interpolation of *pp* results at $\sqrt{s} = 5$ and 13 TeV
- Discrepancy with nPDF predictions in the backward region at high $p_{\rm T}$

Óscar Boente García

Charged hadron production in *p*Pb and *pp*

Phys. Rev. Lett. 128, 142004

- Measurement of differential cross-sections and R_{pPb}
- Constrains to MC generators
- Test models of cold nuclear matter effects: nPDFs, saturation (CGC) models, energy loss, ...

$$\frac{d^{2}\sigma}{dp_{\mathrm{T}}d\eta}\bigg|_{p\mathrm{Pb},pp} = \frac{1}{\mathscr{L}} \cdot \frac{N^{ch}(\eta, p_{\mathrm{T}})}{\Delta p_{\mathrm{T}}\Delta \eta}$$

$$R_{p\text{Pb}}(\eta, p_{\text{T}}) = \frac{1}{A} \frac{d^2 \sigma_{p\text{Pb}}(\eta, p_{\text{T}})/dp_{\text{T}} d\eta}{d^2 \sigma_{pp}(\eta, p_{\text{T}})/dp_{\text{T}} d\eta}$$

Óscar Boente García

Charged hadron production in R_{pPb} : (x_{exp}, Q_{exp}^2) dependence

- Strong suppression at forward η , down to ~ 0.3 at low $p_{\rm T}$
- Enhancement at backward for $p_{\rm T} > 1.5 \,{\rm GeV}/c$
 - Not reproduced by EPPS16 prediction
 - Clear pseudorapidity dependence

$$Q_{exp}^2 \equiv m^2 + p_{\rm T}^2$$
 and $x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{\rm NN}}} e^{-\eta}$

- Continuous evolution of R_{pPb} with x_{exp} at different Q_{exp}^2 , compatible with CMS and ALICE data
- Next step:
 - Measure identified (π, K, p) spectra

Óscar Boente García

Neutral pion production in pPb and pp

- New measurement of π^0 production cross-section:
 - Disentangle effects from different hadrons \rightarrow understand enhancement in backward
 - Input to fragmentation functions (hadronization)
 - Additional constrains to nPDFs and test of saturation effects
 - Input needed for direct photon production measurement
- Datasets:
 - *p*Pb and Pb*p* data at 8.16 TeV
 - *pp* reference interpolated with 5 and 13 TeV datasets
- Detection technique fully independent from charged particle analysis:
 - Measure $\pi^0 \rightarrow \gamma^{cnv} \gamma^{cal}$
 - * use $\pi^0 \rightarrow \gamma^{cal} \gamma^{cal}$ as cross-check and efficiency calibration

Kinematic coverage:

$$1.5 < p_{\rm T} < 10.0 \, {\rm GeV}/c \\ 2.5 < \eta_{\rm CM} < 3.5 \\ -4.0 < \eta_{\rm CM} < -3.0$$

Óscar Boente García

LHCb overview

arXiv:2204.10608

Neutral pion R_{pPb}: forward region

- Strong suppression of π^0 production
 - R_{pPb} compatible with charged hadron result
 - similar shadowing/saturation effects affecting all hadrons
- In agreement with nPDFs (reweighted with LHCb D⁰ data)
 <u>JHEP 05 (2020) 037</u>
 <u>JHEP 1710 (2017) 090</u>
- CGC LO prediction underestimates π^0 suppression <u>PR D88, 114020</u>

Neutral pion R_{pPb}: backward region

LHCb overview

7

8 9 10

 $p_{\rm T} \; [{\rm GeV}]$

Z boson production with charm

Phys.Rev.Lett. 128 (2022) 8, 082001

 Measurement of Z boson associated with charm jet

- Data of pp collisions, $\sqrt{s} = 13 \,\mathrm{TeV}$, $6 \,\mathrm{fb}^{-1}$
- $\sigma(Zc)$ measured by tagging secondary vertices
- Sensitivity to intrinsic charm at forward rapidity
- Result favours PDF prediction including intrinsic charm

Z^0 boson production in pp and pPb

- Z cross-section in pp at $\sqrt{s} = 13 \text{ TeV}$
 - Uncertainty of 2.15% (0.77 % excl. lumi)
 - First double-differential measurement in forward region
- Z cross-section in *p*Pb at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ and R_{pPb}

 $\begin{bmatrix} qd \\ bp \end{bmatrix}^{Z} h 350$

250

200

150

100

50

arXiv:2112.07458 LHCb

 $\sqrt{s} = 13 \text{ TeV}$

FEWZ+NNPDF3.0

FEWZ+MMHT14

FEWZ+ABM12

 5.1 fb^{-1}

FEWZ+CT14

Statistical Uncertainty

Total Uncertainty

Pythia, LHCb tune

POWHEG+Pythia

Resbos

MatchBox

Óscar Boente García

LHCb overview

18 02/05/2022

Production of $\chi_{c1}(3872)$ in *p*Pb

- Nature of $\chi_{c1}(3872)$ not clear (tetraquark, molecule, combination?)
 - Study production with respect to the QCD medium
 - Non conventional hadrons → new probes of hadronization mechanisms

- Measure ratio of prompt $\chi_{c1}(3872), \psi(2S)$ with $\chi_{c1}(3872), \psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
- Use full $\sqrt{s_{NN}} = 8.16 \,\mathrm{TeV}$ dataset

Óscar Boente García

Production of $\chi_{c1}(3872)$ in *p*Pb

- Increase of the $\chi_{c1}(3872)/\psi(2S)$ ratio with system size
- Different behaviour of $\chi_{c1}(3872)$ and $\psi(2S)$
 - $\psi(2S)$ suppressed in $p{
 m Pb}$
 - Enhancement of $\chi_{c1}(3872)$?
- Contrast with trend in pp with multiplicity

LHCb-CONF-2022-001

Óscar Boente García

B_s^0/B^0 ratio with event multiplicity in pp

arXiv:2204.13042

- Event multiplicity-dependent measurement tests dense medium effects
- B_s^0/B^0 could be modified due to b-hadronization via quark coalescence
- Study of $\sigma(B^0)_s/\sigma(B^0)$ ratio with $B^0_{(s)} \to J/\psi \pi^+ \pi^-$, using pp collisions, 5.4 fb⁻¹
- Use two multiplicity metrics:

$$N_{\text{tracks}}^{\text{VELO}}$$
: tracks in $-3.5 < \eta < -1.5$ and $2 < \eta < 5$
 $N_{\text{tracks}}^{\text{backward}}$: tracks in $-3.5 < \eta < -1.5$

B_s^0/B^0 ratio with event multiplicity in pp

arXiv:2204.13042

- Result in several $p_{\rm T}$ bins:
 - Increase of B_s^0/B^0 with multiplicity at low p_T (slope significance = 3.4 sigma)
 - modification occurs at low $p_{\rm T}$, where most of the bulk particles are produced
 - high $p_{\rm T}$ and low-multiplicity consistent with e^+e^- result

B_s^0/B^0 ratio with event multiplicity in pp

arXiv:2204.13042

- Comparison between different multiplicity metrics
- No significant enhancement is observed for $N_{\text{tracks}}^{\text{backward}}$
 - Indication that mechanism behind enhancement is related with multiplicity in similar rapidity as B meson

Óscar Boente García

LHCb overview

Detached antiproton production in pHe

- LHCb measured \overline{p} production in *p*He at $\sqrt{s_{NN}} = 110 \,\text{GeV}$ (PRL 121 (2018) 222001)
 - Study of AMS excess of \overline{p}
 - Predictions rely on cross-sections of prompt and detached \overline{p} \overline{p}
- Measure now antiprotons from detached sources (hyperon decays)
- Two approaches:

Phys.Rev.Res. 2 (2020) 2, 023022

Óscar Boente García

LHCb overview

Detached antiproton production in pHe

Óscar Boente García

LHCb overview

Charm in fixed-target mode

LHCb overview

02/05/2022

26

Results in PbPb collisions

- New results in PbPb collisions:
 - Centrality determination in PbPb and PbNe
 - J/ψ photo-production in peripheral collisions (Phys. Rev. C 105, L032201)
 - Λ_c/D^0 ratio in peripheral collisions
- See talk by Samuel Belin

arXiv:2111.01607

Óscar Boente García

LHCb overview

Summary

- LHCb has unique capabilities for measurements in QCD & Heavy Ion physics
- Very interesting new measurements were presented (incomplete list!)
 - Charged hadrons and π^0 production in *p*Pb and *pp* collisions
 - New D^0 production measurement in pPb at 8TeV
 - Z boson production with charm jets and Z boson cross-sections in pp and pPb collisions
 - Production of $\chi_{c1}(3872)$ and $\psi(2S)$ in *p*Pb collisions
 - B_s^0/B^0 ratio with respect multiplicity in pp collisions
 - antiproton production from hyperons in pHe collisions
- Additional constrains to nPDFs and some tensions with predictions
- Better performance and larger datasets expected for Run 3
- Other LHCb-related talks:

- Élisabeth Niel (Charm in fixed target) Samuel Belin (Charm production in PbPb collisions) Benjamin Audurier (Physics prospects & detector improvements)

Backup

Heavy-ion and QCD physics at LHCb

Some of the LHCb strong points:

- Unique coverage in (x, Q^2)
 - constrains to nPDFs
- Precision and unique heavy-flavour measurements down to low $p_{\rm T}$
 - clean separation of prompt-nonprompt, angular measurements
- Study of the saturation region
 - full capabilities in the very low-x region at forward region (charged hadrons, photon and neutral hadron reconstruction with very low $p_{\rm T}$ coverage)
- Spectroscopy and exotic hadrons
- UPC and CEP measurements
 - excellent p_{T} resolution

Neutral pion production in *p*Pb

LHCD ГНСр

LHCb-PAPER-2021-053 (in preparation)

Comparison with non reweighted nPDF predictions

