

QGP France Tours

ALICE Quarkonia overview newest results

Maxime Guilbaud⁽¹⁾

(1) IMT-Atlantique, SUBATECH – guilbaud@subatech.in2p3.fr

03/05/22

ALICE & quarkonia

Quarkonia measurements: $J/\psi \rightarrow e^+e^-$ (prompt/non-prompt separation) <u>Midrapidity:</u> $|y_{ee}| < 0.9$ **Time Projection Chamber:** Charged particle tracking $J/\psi, \psi(2S), \Upsilon(nS) \rightarrow \mu^+ \mu^-$ Particle identification (inclusive quarkonium states) <u>Forward rapidity:</u> $2.5 < y_{\mu\mu} < 4$ **Inner Tracking System:** Particle tracking Vertex reconstruction V0: **Trigger detector** Event characterization **Muon Spectrometer:** Muon tracking Muon trigger **Time Of Flight:** Charged particle identification

Sequential dissociation

- Sensitive to medium temperature
- Static vs. Dynamic suppression
- Stronger suppression of ground states w.r.t excited states

Why quarkonia in AA?

Regeneration

• Strong effect at LHC energy

Braun-Munzinger, P., Stachel, J. The quest for the quark-gluon plasma. *Nature* 448, 302–309 (2007)

• When does it occur?

Phase boundary and/or during the QGP phase ?

Excited-to-ground state ratio useful to disentangle various scenarii

Energy loss : charm versus beauty

- Heavy quark (b & c) produced early during the collision via hard parton scattering
 - Energy loss in QGP via collisional & radiative processes
 - Dead cone effect reduces radiative losses for beauty

Mass dependence of parton energy loss expected from light to heavy-flavor

 Accessible via bottomonia or non-prompt charmonia

Inclusive J/ ψ

Suppression vs. regeneration

- More regeneration at mid-rapidity w.r.t forward
 - in more central events
 - \succ at low p_T
- No strong conclusion from model comparison on pheno.

Inclusive J/ ψ

Suppression vs. regeneration

- More regeneration at mid-rapidity w.r.t forward
 - in more central events
 - \succ at low p_{τ}
- No strong conclusion from model comparison on pheno.

Regeneration : quest for its origin

- Compatible with regeneration scenario
- Inclusive measurement : 10-20% contribution from non-prompt

Regeneration : charm only

- Compatible with regeneration scenario
- Dynamic description of the dissociation in agreement

Excited states: $\psi(2S)$

New results with full Run 2 statistics

- Down to most central events
- Down to $p_T = 0$

Regeneration: quest on its origin... returns

- $_{
 m O}~$ Higher suppression of ψ (2S) compared to J/ ψ
- Compatible with regeneration scenario (transport model shown)

Large uncertainties on models... can we do better?

Smaller uncertainties

- IS effect largely cancels for models
- Ratio theoretically weakly dependent on charm production X-sec.

Smaller uncertainties

- > IS effect largely cancels for models
- Ratio theoretically weakly dependent on charm production X-sec.

ALI-PREL-511153

ALI-PREL-511147

Weak regeneration effect for beauty

- \circ Y(1S) suppressed by a factor 3 w.r.t p-p
- Υ(2S) suppressed by a factor 2-3 w.r.t Υ(1S)

Weak regeneration effect for beauty

- \circ Y(1S) suppressed by a factor 3 w.r.t p-p
- \circ Y(2S) suppressed by a factor 2-3 w.r.t Y(1S)

Beauty not strongly affected by regeneration at LHC

Energy loss : charm vs. beauty

- O Strong suppression at high-p_T
- Increases toward low p_T
 - hints that heavy quarks are pushed toward lower p_T
- $\,\circ\,$ Similar trend for J/ ψ and D^0
 - \blacktriangleright \neq can arise from kinematics
- Collisional & radiative E_{loss}
 models compatible with data

quarkonia polarization : introduction

Related to spin alignment of a particle w.r.t a given axis :

• For a vector meson (\mathbf{v}), the total angular momentum (\mathbf{J}, \mathbf{J}_z) is :

 $|\boldsymbol{\nu}: \boldsymbol{J}, \boldsymbol{J}_{\mathbf{z}}\rangle = \boldsymbol{b}_{+1}|1, +1\rangle + \boldsymbol{b}_{\mathbf{0}}|1, 0\rangle + \boldsymbol{b}_{-1}|1, -1\rangle$

 The angular distribution of the decay products is linked to the spin alignment

 $W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos^2\phi + \lambda_{\theta\phi}\sin^2\theta\cos\phi)$

Various interest depending on system size & centrality

- Bring constraints to production mechanisms, NRQCD in pp
- Sensitive to the feed-down contribution & regeneration in central AA
- In non-central events, polarization is sensitive:
 - to the large angular momentum due to the rotating medium
 - the short-living but huge magnetic field formed

Reference frames:

- Helicity (HE): direction of the vector meson in the collision c.m. frame
- Collins-Soper (CS): bisector of the angle between beams in the vector meson rest frame

Small differences between pp & PbPb:

- Up to 3σ in HE compared to LHCb
- Can it be due to regeneration/suppression ?
- Role of the angular momentum and of the magnetic field ?

EVENT-PLANE

New measurement using an Event Plane (EP) based frame

- Axis orthogonal to the Event Plane in the collision center of mass frame
- \circ > 3.5 σ deviation from 0 observed
- Full theoretical description needed

Y(1S) polarization

No polarization and no p_T dependence in pp

Collectivity in small system

- Finite v₂ measured in pPb
- Similar pattern compared to PbPb and light flavors
- \circ 1st attempt to measure v₂ in pp down to 0 p_T with ALICE
 - Compatible with 0 despite significant signal in the light flavour sector

MPI as the based mechanism to produce collectivity

- Another way to look at collectivity in small systems
- What should we expect ?

MPI as the based mechanism to produce collectivity

- Another way to look at collectivity in small systems
- What should we expect ?

MPI as the based mechanism to produce collectivity

- Another way to look at collectivity in small systems
- What should we expect ?

J/ψ puzzle !

Non trivial correlation in ALICE central barrel

- No model able to reproduce this qualitatively
- Important to understand the interplay soft-hard here
- More results for other systems and particles

Non trivial correlation in ALICE central barrel

- \circ linear increase for ψ (2S) normalized yield vs. multiplicity
- o flat behaviour for ψ (2S) / J/ ψ ratio vs. multiplicity
- Same behaviour regardless of the system size

Non trivial correlation in ALICE central barrel

- \circ linear increase for ψ (2S) normalized yield vs. multiplicity
- o flat behaviour for ψ (2S) / J/ ψ ratio vs. multiplicity
- Same behaviour regardless of the system size
- Models: agreement at low mult. / tension at high mult.

 J/ψ pair production

Non trivial correlation in ALICE central barrel

- Constraint on:
 - DP scattering
 - > J/ ψ production, NRQCD
- Good agreement w/ LHCb
 - ALICE is inclusive
 - ➤ ≠ acceptances

AIP, 1523 (2013) 1

Conclusion

Suppression / Regeneration

- All results consistent so far with strong regeneration at LHC
- Underlying mechanism (when does the regeneration occurs) is still to be understood
 - High precision ground-to-excited state ratio may help
 - SHM has difficulty to reproduce the current data

Polarization

- $\,\circ\,\,$ Significant polarization observed in PbPb for J/ ψ in HE and EP frame
- Full theoretical description is still missing

Small system

- o J/ψ flow compatible with 0 and
- Quarkonia production multiplicity dependence seems to scale with multiplicity: standard MPI scenario

RUN 3 prospective

Increased luminosity :

o in AA a factor 10-100 can be expected depending on the observable

Probing nuclear gluon density

- Cross section sensitive to gluon distribution function
- New measurement probes low-x gluon nuclear PDFs
 - Extracted gluon shadowing factor: $R_g = 0.65 \pm 0.03$, x~10⁻³

Extraction as a function of centrality down to 30-50%

- Measurement of coherent J/Ψ photoproduction
- May open the door for new probes for QGP

