

Charm with fixed-target LHCb

<u>Elisabeth Maria Niel</u> École polytechnique fédérale de Lausanne *Rencontres QGP France 2022* 2-5 May 2022

Laboratoire de Physique des 2 Infinis

The LHCb detector

Single arm forward spectrometer with excellent vertexing, tracking, PID (acceptance $2 < \eta < 5$)

- Excellent performances
- \succ It is a "charm factory": for *pp* collisions,
 - $4 \times 10^{32} \ cm^{-2}s^{-1}$ luminostiy for Run 2: the rate of $c\bar{c}$ pairs is 0.96 MHz
 - The rate of Λ⁺_c seen by the LHCb detector is 602 Hz
- Unique system to inject gas (SMOG) originally designed for luminosity measurements.
 Re-used to transform LHCb in a fixed-target experiment. [JINST 9 (2014) P12005]
- ➢ Data Samples SMOG:

SMOG pollution

- Data sample: 2.5 TeV protons on Neon, center of mass energy of 68.9 GeV
- Data are taken simultaneously with pp collisions at 5 TeV, no special runs.
- Major problem: pollution from pp collisions « ghost charges ».
 - pp and p-Gas data are taken at the same time alternating full and empty bunches.
 - Some debunched protons from the previous beam go to the following bunch which is supposed to be empty.

SMOG pollution

Cleaning using the event topology:

- Z coordinate of the PV: SMOG has a larger PVZ region
- Number of hits in the Pile Up stations of VELO at z = −315 and z = −220 mm
 → small for smog events which are forward
- Number of reconstructed tracks (nTracks) pointing opposite to LHCb

Global event cuts for 2017 pNe SMOG data. Technical report, CERN, Geneva, Jun 2020. <u>https://cds.cern.ch/record/2720461.</u> By Frédéric, Benjamin, Felipe and Emilie

	$-200 < Z_{PV} < -100$	$-100 < Z_{PV} < +100$	$+100 < Z_{PV} < +200$
nPUHits=0 - GC	$(0.64 \pm 0.31)\%$	$(8.93 \pm 3.27)\%$	$(0.57 \pm 0.34)\%$
n PUHits=0 - SL	$(24.32 \pm 1.16)\%$	$(31.26 \pm 0.88)\%$	$(21.35 \pm 1.28)\%$
Correction factor	1.235 ± 0.012	1.195 ± 0.044	1.207 ± 0.013
nPUHits<3 - GC	$(2.25 \pm 0.47)\%$	$(29.44 \pm 4.77)\%$	$(1.84 \pm 0.56)\%$
n PUHits<3 - SL	$(14.86 \pm 0.91)\%$	$(24.32 \pm 0.77)\%$	$(14.23 \pm 1.04)\%$
correction factor	1.123 ± 0.010	0.877 ± 0.060	1.121 ± 0.012
nPUHits<5 - GC	$(4.69 \pm 0.62)\%$	$(49.08 \pm 5.35)\%$	$(3.76 \pm 0.78)\%$
n PUHits<5 - SL	$(11.91 \pm 0.81)\%$	$(21.79 \pm 0.73)\%$	$(12.17 \pm 0.96)\%$
correction factor	1.067 ± 0.010	0.620 ± 0.065	1.080 ± 0.013

Table 7: GC: Fraction of Ghost-Charge residual contamination after nPUHits cut; SL: fraction of fixed-target Signal Loss after nPUHits cut. Correction factor is given by $(1 - GC) \times (1 + SL)$

Charm production as a probe for QCD

Charmonium production

- 1. It's a smoking gun of QGP production via the color screen mechanism
- 2. J/ψ suppression has been studied in several fixed-target experiment, however the underlying mechanism is still not fully understood \rightarrow new measurements in different colliding systems are fundamental to constraint cold nuclear matter effects
- 3. Suppression compensated by statistical recombination at high \sqrt{s}_{NN}
- 4. Other charmonium states also affected : $\psi(2S)$ and χ_c with lower binding energy (suppressed at lower temperature). For J/ψ produced from excited states \rightarrow sequential suppression.

Why Open Charm?

- 1. D^0 open charm, not affected by QGP and gives an estimate of the total amount of $c\bar{c}$ pairs
- 2. Compare the ratio J/ψ to D^0 in pNe and PbNe systems
- 3. Cross-section and asymmetry relevant to study the nucleon content

Measurement with pNe LHCb data:

- 1. J/ψ cross-section (integrated and as a function of p_T and y^*)
- 2. $J/\psi / \psi(2S)$ ratio using di-muon decay
- 3. D^0 ratio, using $D^0 \to K^- \pi^+$
- 4. D^0 production asymmetry

<u>T. Matsui, H. Satz, Physics Letters B 178 (1986), no. 4.</u> <u>Phys.Rev.D 64 (2001) 094015</u>

Charmonium production

$$\sigma_{y*\in[-2.29,0]}^{J/\psi} = 444.1 \pm 6.9 \text{ (stat)} \pm 4.5 \text{ (uncorr syst)} \pm 21.2 \text{ (corr syst)nb/A}$$

1. J/ψ cross section measurement:

- Total cross-section: extrapolation to full phase space using Pythia8+CT09MCS PDF
- power-law dependency with $\sqrt{S_{NN}}$

- HELAC-ONIA using CT14NLO and nCTEQ15 under shoot the data
- Good agreement with predictions with (1%) and without an Intrinsic Charm contribution

Charmonium production

• Ratio $J/\psi / D^0$

Benchmark for $c\bar{c}$ suppression in PbNe Strong dependency in p_T Integrated:

 $\frac{\sigma_{J/\psi}}{\sigma_{D^0}} = 0.0106 \pm 0.0005 (\text{stat} + \text{uncorr}) \pm 0.0008 (\text{corr})$

• Ratio $\psi(2S)/J/\psi$ first measurement in SMOG:

In line with other measurements for different values of target atomic mass number (A)

$$\frac{\mathsf{B}r_{\psi(2S)\to\mu^+\mu^-}\sigma_{\psi(2S)}}{\mathsf{B}r_{J/\psi\to\mu^+\mu^-}\sigma_{J/\psi}} = 1.67 \pm 0.27 \text{ (stat.)} \pm 0.10 \text{ (syst.) \%},$$

Open charm results

$$\sigma_{y*\in[-2.29,0]}^{D^0} = 0.6 \text{ (stat)} \pm 0.4 (\text{uncorr. syst.}) \pm 2.8 (\text{corr. syst.}) \,\mu\text{b/A.}$$

1. Previous measurement in pHe/pAr no strong evidence of intrinsic charm in the nucleon was observed in the large bjorken-x region: Phys. Rev. Lett. 122 (2019) 132002

$$x \simeq \frac{2m_c}{\sqrt{s_{\rm NN}}} \exp(-y^*)$$

- 2. Here the IC component should enhance the D^0 production for negative y*
- 3. A contribution at the 1% level of valence-like IC improves the agreement between data and theoretical predictions

8

$\mathcal{A}_{\mathrm{prod}} =$	$= \frac{\sigma(D^0) - \sigma(\overline{D}^0)}{\sigma(D^0) + \sigma(\overline{D}^0)} \qquad \qquad$	► 781/SELEX ► E791 E815/NuTeV E687 E831/FOCUS WA89 WA82	$ \begin{array}{r} 600 \\ 572 \\ 500 \\ 20 to 400 \\ 220 \\ 170 \\ 340 \\ 340 \\ 370 \\ \end{array} $	$\begin{array}{c} \Sigma \text{and } \pi \\ \hline p \\ \hline \pi^- \\ \hline \nu_\mu, \overline{\nu}_\mu \\ \hline \gamma \\ \hline \gamma \\ \hline \Sigma^- \text{ and } \pi^- \\ \hline \pi^- \\ p \end{array}$	E
Asymmetry measured in fixeBeam hadron shares a quark	ed target for D^+ (pion beam) and D_s^+ (Σ beam) with only one of the charged states leading particl	WA92/Beatrice	350	π ⁻	(
$D = E791$ $D = WA82$ $D + / -$ $\Delta E769$ $D = D + / -$ D	$D_{S}^{+/-}$	A	$\equiv \frac{N_{D_s^-}}{N_{D_s^-}}$	$- N_{D_s^+}$ $- + N_{D_s^+}$;
$ -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0. x_{F} $	0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 x _F	Ph	nys. Lett. B 5	58 (2003) 34, a	rXiv:he

Open charm results

Asymmetry:

(2003) 34, arXiv:hep-ex/0302039. 9

 $D^+: c\overline{d}$ D : dc

 $D^0: c\overline{u}$

 \overline{D}^0 : u \overline{c} D_s^+ : c \overline{s}

D_s: sc

Open	c]	harm	resul	lts

Asymmetry:

$$\mathcal{A}_{\mathrm{prod}} = rac{\sigma(D^0) - \sigma(\overline{D}^0)}{\sigma(D^0) + \sigma(\overline{D}^0)}$$

- Asymmetry measured in fixed target for D^+ (pion beam) and D_s^+ (Σ beam)
- Beam hadron shares a quark with only one of the charged states leading particle effect

	Experiment	Beam	Beam	Target Material
		Momentum	Particle	
		$({ m GeV}/c)$		
[E690	800	p	LH_2
••• (E771	800	p	Si
ĺ	E866/NuSea,	800	p	LH_2, LD_2, C, Ca, Fe, W
	E789 and $E772$			Ag, Au, and Cu dump
	E769	250	$\pi^{\pm}, K^{\pm}, \text{ and } p$	Be, Al, Cu, and W
ĺ	E781/SELEX	600	Σ^- and π^-	C and Cu
		572	p	C and Cu
	E791	500	π^{-}	C and Pt
[E815/NuTeV	20 to 400	$ u_{\mu},\overline{ u}_{\mu}$	Fe
[E687	220	γ	Be
	E831/FOCUS	170	γ	BeO and Si
	WA89	340	Σ^- and π^-	C and Cu
[WA82	340	π^{-}	Si, Cu, and W
		370	p	Si and W
(WA92/Beatrice	350	π^{-}	Cu and W

$$x_F = 2\sinh y^* \sqrt{\frac{m^2 + p_T^2}{s_{NN}}}$$

Open charm results

Asymmetry:

$$\mathcal{A}_{\mathrm{prod}} = rac{\sigma(D^0) - \sigma(\overline{D}^0)}{\sigma(D^0) + \sigma(\overline{D}^0)}$$

LHCb observes a negative asymmetry, up to -15%, with a clear y*-dependency

- 1. Pythia predicts a negative asymmetry, independent of y*
- 2. This production asymmetry shows the x_F dependency, where the asymmetry increases when reaching the valence quark region (i.e $x_F \sim -0.3$).

Does this come from the quark content of the target Ne? What about other charm hadrons ?

We would expect smaller D+/D- asymmetry, opposite Ds/Dsbar and Lc/Lcbar asymmetries \rightarrow to be confirmed!

 $D^{+}: c\overline{d}$ $D^{-}: d\overline{c}$ $D^{0}: c\overline{u}$ $\overline{D}^{0}: u\overline{c}$ $D_{s}^{+}: c\overline{s}$ $D_{s}^{-}: s\overline{c}$

11

Charm baryons cross section measurement: Λ_c^+ and Ξ_c^+

 \triangleright Since the luminosity for the *p*Ne sample is measured, absolute cross section measurement is possible

For PVZ in [-200,-100] and [100,150] mm 24.9 +/- 0.3 +/- $1.6 nb^{-1}$ (by Giacomo Graziani, used in open charm and charmonium analysis)

> Measure differential cross section as a function of y^* and p_T

Motivation (similarly to the D^0 and J/ψ analysis) :

- 1. First measurement of baryon cross-section in SMOG
- 2. Compare with theory prediction (heavy quark production in pQCD)
- 3. Compare to D^0 as in pPb for ALICE
- 4. Λ_c^+ polarization measurement

https://arxiv.org/pdf/2011.06078.pdf

Ratios baryons/mesons

- > It is even more interesting to study ratios of: Lc/D0, Lc/D+, Lc/Ds
- Heavy-flavours can be used to test pQCD
- \succ Common part for baryons and mesons = production \rightarrow cancels in the ratio
- ➢ Ratios allow to study heavy quark coalescence : if colaescence happens, then $p_T^{\Lambda_c^+} ≫ p_T^{D^0}$ → enhanced Λ_c⁺ production (w.r.t. heavy quark fragmentation)

\succ For SMOG:

- 1. Different energy or multiplicity
- 2. Do we have more/less coalescence?
- 3. We could even compare with strange baryon/meson ratio, is it the same for s and c quarks?

The puzzling asymmetries

• Asymmetry:

 $\mathcal{A}_X = \frac{N(X) - N(\bar{X})}{N(X) + N(\bar{X})}$

- There is one (non conclusive) measurement from FermiLab (E791) for Λ_c^+ asymmetry, compatible with no asymmetry or with increasing at $x_F = 0$.
- There is also a measurement from **SELEX**, with different beams

Phys.Lett.B495:42-48,2000

Experiment	Beam	Beam	Target Material
	Momentum	Particle	
	$({ m GeV}/c)$		
 E690	800	p	LH_2
 E771	800	p	Si
E866/NuSea,	800	p	LH_2, LD_2, C, Ca, Fe, W
E789 and $E772$			Ag, Au, and Cu dump
E769	250	$\pi^{\pm}, K^{\pm}, \text{ and } p$	Be, Al, Cu, and W
E781/SELEX	600	Σ^- and π^-	C and Cu
	572	p	C and Cu
 E791	500	π^{-}	C and Pt
E815/NuTeV	20 to 400	$ u_{\mu},\overline{ u}_{\mu}$	${ m Fe}$
E687	220	γ	Be
E831/FOCUS	170	γ	BeO and Si
WA89	340	Σ^- and π^-	C and Cu
WA82	340	π^{-}	Si, Cu, and W
	370	p	Si and W
WA92/Beatrice	350	π^{-}	Cu and W

Questions we would like to answer after seeing this large asymmetry for charm mesons:

- 1. How is the c/\bar{c} hadronization asymmetry changing for Λ_c^+ (udc): same trend? Inverted trend?
- 2. At y^* (very) negative, valence region \rightarrow more u/d quarks available \rightarrow do we produce more Λ_c^+ ?
- 3. Compare the different charm asymmetries in SMOG

SMOG could largely improve this!

Polarisation in SMOG

First polarisation measurement in fixed-target

Why: Proposal for **MDM measurement** of charm baryons at LHCb. The combined measurements of MDMs of Ξ_c^+ and Λ_c^+ can help understand the g-factor of the charm quark

The idea: crystal 1 deflect the beam \rightarrow target + bending crystal

- crystals will be placed upstream of LHCb (used to analyze the decay products)
- already used for Σ^+ MDM measurement $c\tau \sim 2.4 \ cm$ (E761, Fermilab, <u>D.Chen, PhD thesis, SUNY, Albany, 1992</u>).
- For Λ_c^+ harder due to shorter $c\tau \sim 60 \ \mu m$
- Preliminary measurement in pp collisions to fix the amplitude model performed

LHCb-INT-2017-011 JHEP 08 (2017)

> PJC 77 (2017) EP 1708:120 (2017) PJC 77 (2017) 828 PJ.C 80 (2020) 10, 929

D^0 and J/ψ in PbNe collisions

- First measurement of J/ψ and D^0 in fixed target nucleus-nucleus collisions
- Centrality determined by energy deposit in electromagnetic calorimeter arXiv:2111.01607
- The ratio of J/ψ over D0 is evaluated integrated and binned in y, pT, and nSPDHits.
- Luminosity measurement still missing, no absolute cross section available yet
- Ratio integrated:

$$\frac{\sigma_{J/\psi}}{\sigma_{D^0}} = (5.1 \pm 0.4 \pm 0.9) \times 10^{-3}$$

Charm in pNe vs PbNe

- Evaluate suppression as a function of the nucleons participating to the collision N_{par} and the nb of binary nucleon-nucleon collisions N_{coll} (estimated from Glauber model to the actual data)
- pNe collisions = very peripheral PbNe collisions, ratio in pNe:

 $\frac{\sigma_{J/\psi}}{\sigma_{D^0}} =$ $\pm 0.0005(\text{stat} + \text{uncorr}) \pm 0.0008(\text{corr})$

- Ratio for PbNe and pNe vs *N_{coll}* fitted with a power law:
 - D^0 not suppressed due to CNM effects or QGP $\rightarrow \sigma_{AB}^{D^0} \propto N_{coll} \sigma^{J/\psi}/\sigma^{D^0} \propto N_{coll}^{\alpha'-1} \Rightarrow$
 - whereas J/ψ could be $\longrightarrow \sigma_{AB}^{J/\psi} \propto N_{coll}^{\alpha'}$

 $\sigma_{J/\psi}/\sigma_{D^0}$

10

0.05 $\alpha' =$ $\rightarrow J/\psi$ suppressed by additional nuclear effects compared to D^0

product of the mass number of the nuclei A and B: pNe = 20, PbNe = 4160.04 close with $\alpha =$ the v a littérature ~0.92 Phys. Rev. Lett. 84 (2000) 3256. Physics Letters B 466 (1999) 408. The European Physical Journal C -Particles and Fields 33 (2004) 31. Phys. Lett. B 410 (1997) 337

Conclusions

> SMOG data have produced unique results and more results are to come!

- ≻ Today : Open charm and charmonium production in pNe and PbNe
- \succ Future: charm baryons (Λ_c^+ and Ξ_c^+) polarization, production cross-section and asymmetry

SMOG2 successfully installed, first runs are coming soon!

Ready to collide???

Charmed baryons: Λ_c^+ at Fermilab E791

- ▶ 1999 Phys.Lett.B471:449-459, 2000
- > 500 GeV/c π^- N interactions by Fermilab experiment E791
- First five-dimensional resonant amplitude analysis of $\Lambda_c^+ \rightarrow p K^- \pi^+$ with **946** \pm **38** events

$\Lambda_c^+ \to p \; K^- \pi^+$	non resonant
$\Lambda_c^+ \to (K^* \to K^- \pi^+) p$	K* chain
$\Lambda_c^+ \to (\Delta^{++} \to p\pi^+) \; K^-$	Δ chain
$\Lambda_c^+ \to (\Lambda \to pK^-) \pi^+$	Λ chain

 Λ_c branching ratios relative to the inclusive $\Lambda_c^+ \to pK^-\pi^+$ branching fraction. The NA32 and ISR values were calculated from one-dimensional projections only.

Mode	E791	NA32[16]	ISR[17]
$p\overline{K}^{*0}(890)$	$0.29{\pm}0.04{\pm}0.03$	$0.35^{+0.06}_{-0.07}{\pm}0.03$	$0.42{\pm}0.24$
$\Delta^{++}(1232)K^-$	$0.18{\pm}0.03{\pm}0.03$	$0.12^{+0.04}_{-0.05}{\pm}0.05$	$0.40{\pm}0.17$
$\Lambda(1520)\pi$	$0.15{\pm}0.04{\pm}0.02$	$0.09^{+0.04}_{-0.03}{\pm}0.02$	
Nonresonant	$0.55 {\pm} 0.06 {\pm} 0.04$	$0.56^{+0.07}_{-0.09}{\pm}0.05$	

9

 \triangleright evidence for an increasingly negative polarization of the Λ_c^+ baryons as a function of p_T

- Additional data are needed in order to conclusively demonstrate the presence of additional resonances
- ➤ Today we know that the amplitude model used by E791 was incomplete

Moving towards SMOG measurement

- To measure the polarization: fix the helicity couplings to the values obtained in *pp* data, let only the polarization vary
- Expected number of $\Lambda_c^+ \rightarrow p \ K^- \pi^+$ events after cleaning with an handmade selection: ~200-300 signal events
- Increase of the number of events using machine learning technique to optimise the selection: ~400 signal events
- Simplified model, not all the resonances seen in pp data, for now only: $K^*(890)$, $\Lambda^*(1520)$, $\Delta^{++}(1232)$.
- Conclusion from toy studies: the measurement can be performed with a **statistical error ~0.12**
- The statistics will be improved during Run 3 thanks to SMOG2: statistical error ~0.004, systematic uncertainties will dominate

Table 2: Expected yields of reconstructed events for selected processes using fixed-target data samples acquired with SMOG during the LHC Run 2, and possible with SMOG2 during Run 3 (using as an example the pAr sample according to the scenario in Table 1).				
	SMOG	SMOG	SMOG2	
	published result	largest sample	example	
	pHe@87~GeV	pNe@69 GeV	pAr@115 GeV	
Integrated luminosity	$7.6 \ {\rm nb}^{-1}$	$\sim 100 \ {\rm nb}^{-1}$	$\sim 45 \ \mathrm{pb}^{-1}$	
syst. error on J/ψ x-sec.	7%	6 - 7%	2 - 3 %	
J/ψ yield	400	15k	15M	
D^0 yield	2000	100k	150M	
Λ_c^+ yield	20	$1 \mathrm{k}$	1.5M	
$\psi(2S)$ yield	negl.	150	150k	
$\Upsilon(1S)$ yield	negl.	4	7k	
Low-mass Drell-Yan yield	negl.	5	9k	

Nb signal events	Statistical error
200	0.144
300	0.118
400	0.103
SMOG2	SMOG2
300 000	0.004

Initial plan

Measure Λ_c^+ polarization in the pNe sample (2017) using $\Lambda_c^+ \rightarrow p \ K^- \pi^+$

- Why: Proposal for MDM and EDM measurement of charm baryons at LHCb. The combined measurements of MDMs of Ξ_c^+ and Λ_c^+ can help understand the g-factor of the charm quark
- The idea: crystal 1 deflect the beam \rightarrow target + bending crystal
 - crystals will be placed upstream of LHCb (used to analyse the decay products)
 - already used for Σ^+ MDM measurement $c\tau \sim 2.4 \ cm$ (E761, Fermilab, <u>D.Chen, PhD thesis</u>, <u>SUNY, Albany, 1992</u>). For Λ_c^+ harder due to shorter $c\tau \sim 60 \ \mu m$
 - \rightarrow Need the polarization in fixed-target collision as input of MDM measurements.
- Fixed-target pNe sample collected at LHCb in 2017 is too small, need to perform a preliminary analysis in the pp collision system to fix the amplitude model and fit the amplitude parameters.
- Final step: use the model obtained in *pp* collisions to measure the polarization in the fixed-target sample (well advanced)

10, 929

Previous SMOG results

- 1. Charm production in *p*Ar, *p*He collisions Phys. Rev. Lett. 122 (2019) 132002
- 2. Prompt antiproton in *p*He collisions at 110 GeV Phys. Rev. Lett. 121 (2018) 222001

New Technical publications

- 1. A Neural-Network-defined Gaussian Mixture Model for PID with SMOG data JINST 17 (2022) P02018
- 2. Centrality determination in heavy-ion collisions with the LHCb detector arXiv:2111.01607