Rencontre QGP France 2022

Charm production in PbPb collisions with LHCb

Samuel Belin

Samuel Belin samuel.belin@cern.ch

EXCELENCIA MARÍA DE MAEZTU

1

Introduction

- * Recent charm analyses thanks to the 2018 PbPb data sample
- * Investigate the forward region complementary to the other LHC experiments.
- * Precise identification of μ, π, K, p, e many analyses possible!
- Outline: •
 - * Λ_c/D^0 in peripheral PbPb collisions

 - * J/ ψ , ψ (2S) production in PbPb Ultra-Peripheral Collisions (UPC) * Photo-production J/ψ in peripheral PbPb collisions

CAVEAT: Measurement limited to 60% centrality (see Benjamin's talk to see how it will improve)

The LHCb detector

Single arm spectrometer fully instrumented in pseudorapidity range $2 < \eta < 5$

Samuel Belin <u>samuel.belin@cern.ch</u>

- * Excellent tracking down to p_T=0.
- * Excellent particle identification.
- Excellent primary vertex determination.

The LHCb detector

Single arm spectrometer fully instrumented in pseudorapidity range $2 < \eta < 5$

Samuel Belin <u>samuel.belin@cern.ch</u>

Great detector for UPC!

z = 114.0m

Centrality determination

arXiv:2111.01607

Centrality determination using MCGlauber model

Centrality $\%$	$N_{ m part}\pm\sigma$	$N_{ m coll}\pm\sigma$	$b\pm\sigma$
100 - 90	2.91 ± 0.54	$1.83\pm~0.34$	15.41 ± 2.96
90 - 80	7.03 ± 0.78	5.77 ± 0.64	14.56 ± 1.80
80 - 70	15.92 ± 0.64	16.44 ± 0.69	13.59 ± 0.52
70 - 60	31.26 ± 0.67	41.28 ± 0.93	12.61 ± 0.28
60 - 50	54.65 ± 1.13	92.59 ± 2.01	11.59 ± 0.24
50 - 40	87.54 ± 1.01	187.54 ± 2.43	10.47 ± 0.14
40 - 30	131.24 ± 1.15	345.53 ± 3.89	9.23 ± 0.08
30 - 20	188.02 ± 1.49	593.92 ± 6.62	7.80 ± 0.06
20 - 10	261.84 ± 1.83	972.50 ± 10.37	6.02 ± 0.04
10 - 0	357.16 ± 1.70	1570.26 ± 15.56	3.31 ± 0.01

Events [a.u.] / 0.1 [TeV] 10-1 [10-2] / 0.1 [TeV] 10-2 10-2 10^{-6} 0 E for the formula 10^{-1} 10^{-2} 10^{-2} 10^{-3} 10^{-4} 10^{-4} 10^{-5} 10^{-6}

0

5

Λ_c/D^0 in PbPb @ 5TeV

- Large quark mass -> pQCD calculation
- * Ratio to test pQCD factorisation
- * Probe hadronization mechanisms:
 - Fragmentation functions
 - * Coalescense:
 - Occuring in both small and large system?
 - * Multiplicity dependent?

Λ_c/D^0 in PbPb (@ 5TeV)

 $D^0 \rightarrow K\pi$

$$\Lambda_{\rm c} \rightarrow p {\rm K} \pi$$

- Fit to the invariant mass spectrum
- Fit to the $log(\chi^2_{IP})$ (decay) vertex compatibility with the primary vertex)

Λ_c/D^0 in PbPb (@ 5TeV)

- Flat dependence vs N_{part} **
- Results compatible with pPb results at same energy
- Decreasing trend toward high pT
- Compatible with pythia8 and color reconnection (pp@5TeV)

Λ_c/D^0 in PbPb @ 5TeV

- * Confirm tension with ALICE results
- Rapidity dependence?
- * New results in central PbPb from ALICE
 - * Ratio enhanced with QGP formation ?

 $\mathbf{b} \mathbf{R}_{\mathbf{A}} \mathbf{R}_{\mathbf{B}} = \mathbf{c}_{\mathbf{A}} \mathbf{R}_{\mathbf{B}} = \mathbf{c}_{\mathbf{A}} \mathbf{C}_{\mathbf$

Samuel Belin <u>samuel.belin@cern.ch</u>

J/ψ , $\psi(2S)$ PbPb UPC @5TeV

- * Impact parameter b>R₁+R₂
- * Interaction between two nuclei with no actual hadronic collisions
- * No destruction of the nuclei A+A->A+A+X
- Interaction through the quasi real-photon cloud from one or both nuclei.
- * Large reaction rate as photon flux $\propto Z^2$
- Production of dileptons, vector mesons...

Coherent photo-production

Samuel Belin <u>samuel.belin@cern.ch</u>

J/ψ , $\psi(2S)$ PbPb UPC @5TeV

- Production of vector mesons through the interaction of a photon and a pomeron
- Amplitude of quarkonium production proportional to the Generalized Parton Distribution functions (GPDs) of the target nucleus $G_A(x_1, x_2, t, Q_{eff}^2)$ at large momentum transfer $Q_{eff}^2 \propto m_Q^2/4$ and low x-Bjorken $10^{-5} < x < 10^{-2}$

J/ψ , $\psi(2S)$ PbPb UPC @5TeV

- Both signal contain coherent and incoherent produced candidates
- * J/ ψ from feed-down from $\psi(2S)$
- * Background from $\gamma\gamma \rightarrow \mu\mu$ non -resonnant

Incoherent

J/ψ , $\psi(2S)$ PbPb UPC @5TeV

* Template fit based on the STARLight model

* Shape of the background taken from the side band method

Excellent resolution !

- * Results compared with color-dipole and
- * No model precisely reproduces the data
- * pQCD models have a slightly better agreement

J/ψ , $\psi(2S)$ PbPb UPC @5TeV

- * Overall shape well reproduced by models but the normalization is less accurate

* Peaking structure due to destructive interferences (cannot distinguish the photon emitter).

Coherent J/ ψ in PbPb peripheral collisions

First measurement in PbPb hadronic collisions at LHCb !

Phys. Rev. C 105, L032201

Coherent J/ ψ in PbPb peripheral collisions

- * Consistent with J/ ψ photo-production in PbPb hadronic collisions
- * Most precise p_T measurement to date
- * Shape compatible with model, two assumptions:
 - * No effect of the overlap between the nuclei (UPC-like but small IP)
 - Effect of the overlap *

First measurement in PbPb hadronic collisions at LHCb !

arXiv:2202.02162v2

Coherent J/ ψ in PbPb peripheral collisions

Recent preprint shows good agreement with the soft dipole pomeron model

Agreement with corresponding results from ALICE

Coherent J/ ψ in PbPb peripheral collisions

- ALICE as a lesser precision but central measurement
- Decrease here could be explain by:
 - * Less accessible aera for the photon to interact
 - Melting of the photo produced J/psi, low-pt spectrum not repopulated by (re)combined

Better thermometer for QGP ?

- Precise measurement with LHCb in run3/4
- * However behavior not clearly understood even in UPC

Precise measurement with run3/4!

Conclusion

- * First measurement of Λ_c/D^0 in PbPb collisions at forward rapidity
 - * In agreement with previous LHCb results in pPb/Pbp
 - * Confirm the difference between mid and forward rapidity
- * Really precise measurement of coherent J/ ψ and ψ (2S) production in UPC PbPb collisions.
- * Measurement of photo-produced J/ ψ in peripheral PbPb collisions.
 - * Consistent with photo-production in PbPb peripheral collisions.
 - * Agreement with last model and ALICE results

J/ψ , $\psi(2S)$ PbPb UPC @5TeV

- * PbPb data recorded by the LHCb detector in 2018 with in integrated luminosity of about $\mathscr{L}=228\pm10\mu b$
- UPC Event selection:
 - * Veto events with more than 20 hits in the SPD calorimeter
 - * Selection thanks to the HeRSCheL detector
- Candidates reconstructed with the dimuon channel
 - * Two opposite sign μ with $p_T > 700 \text{ MeV/c}$
 - * $p_T^{\mu\mu} < 1 \text{ GeV}/\text{c} \text{ and } \Delta \varphi^{\mu\mu} > 0.9\pi$

 ξ_{HRC} is a χ_2 variable, $\xi_{HRC} \rightarrow 0$ corresponding to zero or *little activity in HerRSCheL, compatible with UPC*

Backup

References of models

	arxiv:1611.05471 Phys. Rev. C 93, 055206 (2016) Physics Letters B Volume 726, Issues 1–3, 7 October 2013, Pages 290-295 <i>J. High Energ. Phys.</i> 2013 , 207 (2013)
V	Kopeliovich, B. & Krelina, Michal & Nemchik, J. & Potashnikova, I (2020). Heavy quarkonium production in ultraperipheral nuclear collisions. arXiv:2008.05116v1 J. Cepila, J. G. Contreras, and M. Krelina Phys. Rev. C 97 , 024901 – Published 6 February 2018
et al. 3G ; al.	Physics Letters B Volume 772, 10 September 2017, Pages 832-838 arXiv:1703.09256
C	<u>arXiv:hep-ph/0501099</u> <u>arXiv:1710.10070</u>

Λ_c/D^0 in PbPb @ 5TeV

- Large quark mass -> pQCD calculation
- * Ratio to test pQCD factorisation
- * Probe hadronization mechanisms:
 - Fragmentation functions
 - * Coalescense:
 - Occuring in both small and large system?
 - * Multiplicity dependent?

Performances Run 3 PbPb

PbPb collisions

- Increased statistics: improvement of UPC studies. Samuel Belin <u>samuel.belin@cern.ch</u>

Exclusive meson production

