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Introduction Energy loss with hadrons

Energy loss in QGP, using high-pT hadrons

Produced partons interact with the QGP

reduced pT (= ‘energy loss’)

apparent suppression RAA < 1 (‘quenching’)

Collisional energy loss: low-pT . mQ

Mass dependence of energy loss: low to mid-pT

Radiative energy loss dominates pT & 10 GeV
modification (other effects fade out)

medium-induced gluon emission

High-pT hadron ∼ daughter of precursor hard parton traversing the QGP

Quenching first studied with hadrons (RHIC),
then di-jet asymmetry (RHIC+LHC)... but jets 6= partons (= particles)

Hadron ‘simply’ takes momentum fraction 〈z〉 from parton use hadron spectra
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Introduction Radiative energy loss

BDMPS radiative energy loss

QGP diffusion properties characterised by transport coefficient q̂ = µ2

λ ∝ n

Momentum kick in 1 rescaterring: Debye mass µ

Mean free path between 2 rescatterings: λ

Total path length in the medium: L

Depending on tf (emitted gluon formation time), 3 regimes:
incoherent (tf � λ), LPM (λ� tf . L), fully coherent (tf � L)

Integrating the energy spectrum of emitted gluons
BDMPS mean energy loss:

ε ∼ αSCR

4
q̂L2

Hypotheses: ε� E , and L� λ

= small fractional energy loss & large medium

E E – ΔE

medium

λ
μ

L
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Universal RAA(pT) behaviour Model

Hadron suppression from parton energy loss

Model describing only BDMPS radiative energy loss of partons (Arleo, PRL119, 2017)

Using quenching weight P(ε):

dσ
q/g
AA

dpT
(pT ) = A2

∫
dεP(ε)

dσ
q/g
pp

dpT
(pT + ε)

Hadron takes fraction 〈z〉 of parton momentum (smooth FF assumed)

Scaleless P̄, with free parameter 〈ε〉: P(ε) = 1
〈ε〉 P̄

(
ε
〈ε〉

)
Fit high-pT pp cross section dσ/dpT ∼ p−nT
(depending on hadron species)

RAA(pT ) =

∫ ∞
0

dx
P̄(x)(

1 + x 〈z〉〈ε〉pT

)n ' ∫ ∞
0

dx exp

(
−x n 〈z〉〈ε〉

pT

)
P̄(x)
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Universal RAA(pT) behaviour Fits

Fits of RAA(pT)

Fit mean energy loss 〈ε̄〉 = 〈z〉〈ε〉 from many RAA(pT) measurements

pT > 7 to 13 GeV, depending on system (varied for systematic on 〈ε̄〉)

〈ε̄〉 uncertainties: from correlated and uncorrelated (vs pT bins) measurement uncert.
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Universal RAA(pT) behaviour Fits

Bias in peripheral collisions

Event-selection and geometry bias set forth by Loizides and Morsch (PLB773 (2017))

Multiply the RAA model by their correction factors, relevant for centralities > 50%
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Universal RAA(pT) behaviour Results

Universal high-pT shape: RAA(pT, 〈ε̄〉) ' RAA(pT/〈ε̄〉)

62 fits to measured RAA(pT),
all consistent with model at high pT!

3 particles: light hadrons (and π0), J/ψ, D

4 energies: 0.2, 2.76, 5.02, 5.44 TeV

4 experiments: CMS, ALICE, ATLAS, PHENIX

Many centrality classes + pp spectrum

Scaling of RAA(hadrons) for pT & 8− 10 GeV

J/ψ and D mesons also scaling!
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Scaling with medium properties Principle

Energy loss vs medium geometry+density

Salgado & Wiedemann PRL89 (2003) model the decreasing medium density with

q̂ ∝ q̂0
(τ0
τ

)α
q̂0 ∝ n ∝

(
dNch
dy

∣∣∣
y=0

)
/A⊥τ0 (Bjorken estimate)

α characterises the medium expansion

τ0 = QGP formation time (assumed � L)

Equivalent transport coefficient in static medium:

〈q̂〉 =
2

L2

∫ τ0+L

τ0

dτ (τ − τ0)× q̂0
(τ0
τ

)α
' 2

2− α
q̂0
(τ0
L

)α

ε ∝ 〈q̂〉 L2 ∝ τα−10

dNch
dy

∣∣∣
y=0

AT
× L2−α
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Scaling with medium properties Scaling measurements

Medium geometry and density

ε ∝ τα−10

dNch
dy

∣∣∣
y=0

AT
× L2−α

Multiplicities from measurements

Path length L and area AT through 4 Glauber models:

MC Glauber from
Loizides, Kamin, d’Enterria, PRC97 (2018)

1 pure hard sphere nuclei: constant density, fully analytic

2 custom optical Glauber: hard spheres or Woods-Saxon

L less straightforward there:

〈L〉 =

∫
L(~s, φ) ρcoll d~s dφ

2π
∫
ρcoll d~s
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ρcoll d~s

Npart density
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Npart density
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Scaling with medium properties Scaling measurements

Medium geometry and density
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dNch
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∣∣∣
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Scaling with medium properties Scaling measurements

Fitting energy loss VS medium geometry
Fit of β = 2− α
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Scaling with medium properties Predictions

Predictions of RAA(pT) at high-pT in various systems
Knowing dNch/dη + hypothesis on 〈z〉 and CR

can predict 〈ε̄〉 in any system! gives RAA(pT)

Uncertainty on 〈ε̄〉 from fit (considering fully correlated

energy loss values, overestimated for now)

Calculations: ALICE RAA(J/ψ) measurement in PbPb 5 TeV:

Similar CR (gluon-dominated) and 〈z〉 than h± assumed
+ 20% uncertainty

Smaller multiplicity for 2.5 < |η| < 4 (+ uncertainty)

Predictions: RAA(h±) in OO collisions at 7 TeV

Multiplicity extrapolated from PbPb and XeXe
measurements + 6% uncertainty

L and AT as in other systems

pPb collisions? Formalism breaks, but predicts RpPb & 0.8− 0.9 10 210
 [GeV]

T
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Checks and prospects

Checks of formalism
Small influence of inhomogeneity
on energy loss
(constant VS Npart QGP density)

Similar results from two
models with hard spheres
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Checks and prospects

v2

L depends on ϕ path-length dependence of energy loss

Formalism of custom Glauber model gives energy loss of
particles produced at various ϕ angles

ϕ dependence of suppression from energy loss

RAA(ϕ)

Possible to predict v2 of hadrons at pT & 10 GeV
(to be done)

Convergence of v2 for all species at high pT?
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Conclusion

Conclusion

Universal RAA(pT) behaviour of hadrons from radiative energy loss

Extracted energy loss values scale ∝ variable describing medium density and geometry
Path length dependence 〈ε〉 ∝ 〈L〉1 consistent with Bjorken (longitudinal) expansion

All measured systems (PbPb, XeXe, AuAu, 0.2 to 5 TeV) consistent with both scalings
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BACKUP



List of measurements



Conclusion

Energy loss in proton-lead collisions?

The geometric formalism developed for the ε ∝
dNch
dy

∣∣∣
y=0

AT τ0
× Lβ scaling might not be

transferable to p-Pb collisions (and the hypothesis ∆E � E breaks)

However, taking the numerical values from the scaling to measurements, and these
ingredients:

path length 〈L〉 ∼ r0 ' 1 fm

transverse area 〈AT 〉 = πr20 ' π(1 fm)2

Measured average multiplicity ∼ 22 in p-Pb collisions at 8.16 TeV

〈z〉〈ε〉 = 0.5 GeV
Similar to energy loss in PbPb 5.02 TeV at centralities 60-80%
RpA ' 0.8− 0.9 at pT = 10 GeV
Comparable or smaller than cold nuclear matter effects (and formalism might not be

valid)
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