Universality of high-p_T hadron suppression from radiative energy loss in AA collisions

> Guillaume Falmagne Subatech, IMT Atlantique, Nantes

QGP France, Tours May 3rd, 2022

- \rightarrow reduced $p_{\rm T}$ (= 'energy loss')
- \rightarrow apparent suppression $R_{AA} < 1$ ('quenching')

Introduction

Energy loss with hadrons

- Produced partons interact with the QGP
 - \rightarrow reduced $p_{\rm T}$ (= 'energy loss')
 - \rightarrow apparent suppression $R_{AA} < 1$ ('quenching')
- Collisional energy loss: low- $p_T \lesssim m_Q$
- Mass dependence of energy loss: low to mid- p_T

Introduction

Energy loss with hadrons

- Produced partons interact with the QGP
 - \rightarrow reduced $p_{\rm T}$ (= 'energy loss')
 - \rightarrow apparent suppression $R_{AA} < 1$ ('quenching')
- Collisional energy loss: low- $p_T \lesssim m_Q$
- Mass dependence of energy loss: low to mid- p_T
- Radiative energy loss dominates p_T ≥ 10 GeV modification (other effects fade out)
 → medium-induced gluon emission

Introduction

Energy loss with hadrons

 $\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}}$

- Produced partons interact with the QGP
 - \rightarrow reduced $p_{\rm T}$ (= 'energy loss')
 - \rightarrow apparent suppression $R_{AA} < 1$ ('quenching')
- Collisional energy loss: low- $p_T \lesssim m_Q$
- Mass dependence of energy loss: low to mid- p_T
- Radiative energy loss dominates p_T ≥ 10 GeV modification (other effects fade out)
 → medium-induced gluon emission
- \bullet High- $\mathit{p_T}$ hadron \sim daughter of precursor hard parton traversing the QGP
- Quenching first studied with hadrons (RHIC), then di-jet asymmetry (RHIC+LHC)... but jets ≠ partons (= particles)
 - \rightarrow Hadron 'simply' takes momentum fraction $\langle z \rangle$ from parton \rightarrow use hadron spectra

Radiative energy loss

BDMPS radiative energy loss

- QGP diffusion properties characterised by transport coefficient $\hat{q} = \frac{\mu^2}{\lambda} \propto n$
 - $\bullet\,$ Momentum kick in 1 rescaterring: Debye mass μ
 - Mean free path between 2 rescatterings: λ
 - Total path length in the medium: L

Radiative energy loss

BDMPS radiative energy loss

• Depending on t_f (emitted gluon formation time), 3 regimes: incoherent ($t_f \ll \lambda$), LPM ($\lambda \ll t_f \lesssim L$), fully coherent ($t_f \gg L$)

• Momentum kick in 1 rescaterring: Debye mass μ

• Mean free path between 2 rescatterings: λ

• Total path length in the medium: L

Radiative energy loss

BDMPS radiative energy loss

- QGP diffusion properties characterised by transport coefficient
 - Momentum kick in 1 rescaterring: Debye mass μ
 - Mean free path between 2 rescatterings: λ
 - Total path length in the medium: L
- Depending on t_f (emitted gluon formation time), 3 regimes: incoherent ($t_f \ll \lambda$), LPM ($\lambda \ll t_f \lesssim L$), fully coherent ($t_f \gg L$)
- Integrating the energy spectrum of emitted gluons → BDMPS mean energy loss:

- Hypotheses: $\varepsilon \ll E$, and $L \gg \lambda$
 - \rightarrow = small fractional energy loss & large medium

Model

Hadron suppression from parton energy loss

- Model describing only BDMPS radiative energy loss of partons (Arleo, PRL119, 2017)
- Using quenching weight $P(\varepsilon)$:

$$\frac{\mathrm{d}\sigma_{AA}^{q/g}}{\mathrm{d}p_{T}}(p_{T}) = A^{2} \int \mathrm{d}\varepsilon \, \frac{P(\varepsilon)}{\mathrm{d}p_{T}} \frac{\mathrm{d}\sigma_{pp}^{q/g}}{\mathrm{d}p_{T}}(p_{T}+\varepsilon)$$

Model

Hadron suppression from parton energy loss

- Model describing only BDMPS radiative energy loss of partons (Arleo, PRL119, 2017)
- Using quenching weight $P(\varepsilon)$:

$$\frac{\mathrm{d}\sigma_{AA}^{q/g}}{\mathrm{d}p_{T}}(p_{T}) = A^{2} \int \mathrm{d}\varepsilon \, \frac{P(\varepsilon)}{\mathrm{d}p_{T}} \frac{\mathrm{d}\sigma_{pp}^{q/g}}{\mathrm{d}p_{T}}(p_{T}+\varepsilon)$$

- Hadron takes fraction $\langle z \rangle$ of parton momentum (smooth FF assumed)
- Scaleless \bar{P} , with free parameter $\langle \varepsilon \rangle$: $P(\varepsilon) = \frac{1}{\langle \varepsilon \rangle} \bar{P}\left(\frac{\varepsilon}{\langle \varepsilon \rangle}\right)$
- Fit high- $p_{\rm T}$ pp cross section ${\rm d}\sigma/{\rm d}p_T \sim p_T^{-n}$ (depending on hadron species)

Model

Hadron suppression from parton energy loss

- Model describing only BDMPS radiative energy loss of partons (Arleo, PRL119, 2017)
- Using quenching weight $P(\varepsilon)$:

$$\frac{\mathrm{d}\sigma_{AA}^{q/g}}{\mathrm{d}p_{T}}(p_{T}) = A^{2} \int \mathrm{d}\varepsilon \, \frac{P(\varepsilon)}{\mathrm{d}p_{T}} \frac{\mathrm{d}\sigma_{pp}^{q/g}}{\mathrm{d}p_{T}}(p_{T}+\varepsilon)$$

- Hadron takes fraction $\langle z \rangle$ of parton momentum (smooth FF assumed)
- $P(\varepsilon) = \frac{1}{\langle \varepsilon \rangle} \bar{P}\left(\frac{\varepsilon}{\langle \varepsilon \rangle}\right)$ • Scaleless \overline{P} , with free parameter $\langle \varepsilon \rangle$:
- Fit high- $p_{\rm T}$ pp cross section ${\rm d}\sigma/{\rm d}p_T \sim p_T^{-n}$ (depending on hadron species)

Fits of $R_{AA}(p_{\rm T})$

- Fit mean energy loss $\langle \bar{\varepsilon} \rangle = \langle z \rangle \langle \varepsilon \rangle$ from many $R_{AA}(p_{\rm T})$ measurements
- $p_{
 m T}>$ 7 to 13 GeV, depending on system (varied for systematic on $\langle ar{arepsilon}
 angle$
- $\langle \bar{\varepsilon} \rangle$ uncertainties: from correlated and uncorrelated (vs $p_{\rm T}$ bins) measurement uncert.

Fits

Bias in peripheral collisions

- Event-selection and geometry bias set forth by Loizides and Morsch (PLB773 (2017))
- Multiply the R_{AA} model by their correction factors, relevant for centralities > 50%

• Goes up to 18% in 70-90% centr. PbPb collisions

Universal high- p_T shape: $R_{AA}(p_T, \langle \bar{\varepsilon} \rangle) \simeq R_{AA}(p_T/\langle \bar{\varepsilon} \rangle)$

- 62 fits to measured $R_{AA}(p_T)$, all consistent with model at high p_T !
 - 3 particles: light hadrons (and π^0), J/ψ , D
 - 4 energies: 0.2, 2.76, 5.02, 5.44 TeV
 - 4 experiments: CMS, ALICE, ATLAS, PHENIX
 - Many centrality classes + pp spectrum
 - ightarrow Scaling of $R_{AA}(hadrons)$ for $p_{\mathrm{T}}\gtrsim 8-10$ GeV

Universal high- p_T shape: $R_{AA}(p_T, \langle \bar{\varepsilon} \rangle) \simeq R_{AA}(p_T/\langle \bar{\varepsilon} \rangle)$

- 62 fits to measured $R_{AA}(p_T)$, all consistent with model at high p_T !
 - 3 particles: light hadrons (and π^0), J/ψ , D
 - 4 energies: 0.2, 2.76, 5.02, 5.44 TeV
 - 4 experiments: CMS, ALICE, ATLAS, PHENIX
 - Many centrality classes + pp spectrum
 - ightarrow Scaling of $R_{AA}(hadrons)$ for $p_{\mathrm{T}}\gtrsim 8-10$ GeV
 - \rightarrow J/ ψ and D mesons also scaling!

Results

Universal high- p_T shape: $R_{AA}(p_T, \langle \bar{\varepsilon} \rangle) \simeq R_{AA}(p_T/\langle \bar{\varepsilon} \rangle)$

- 62 fits to measured $R_{AA}(p_T)$, all consistent with model at high p_T !
 - ightarrow Scaling of $R_{AA}(hadrons)$ for $p_{\mathrm{T}}\gtrsim 8-10$ GeV
 - \rightarrow J/ ψ and D mesons also scaling!

Energy loss vs medium geometry+density

• Salgado & Wiedemann PRL89 (2003) model the decreasing medium density with

$$\hat{q} \propto \hat{q}_0 \left(rac{ au_0}{ au}
ight)^lpha$$

•
$$\hat{q}_0 \propto n \propto \left(\left. rac{dN_{ch}}{dy} \right|_{y=0}
ight) / A_\perp au_0$$
 (Bjorken estimate)

• α characterises the medium expansion

,

• $\tau_0 = \text{QGP}$ formation time (assumed $\ll L$)

Energy loss vs medium geometry+density

• Salgado & Wiedemann PRL89 (2003) model the decreasing medium density with

•
$$\hat{q}_0 \propto n \propto \left(\left. \frac{dN_{ch}}{dy} \right|_{y=0} \right) / A_\perp \tau_0$$
 (Bjorken estimate) $\hat{q} \propto \hat{q}_0 \left(\frac{\tau_0}{\tau} \right)^{\alpha}$

- α characterises the medium expansion
- $\tau_0 = QGP$ formation time (assumed $\ll L$)
- Equivalent transport coefficient in static medium:

$$\langle \hat{q}
angle = rac{2}{L^2} \int_{ au_0}^{ au_0 + L} \mathsf{d} au \left(au - au_0
ight) imes \hat{q}_0 \left(rac{ au_0}{ au}
ight)^lpha \simeq rac{2}{2 - lpha} \, \hat{q}_0 \left(rac{ au_0}{L}
ight)^lpha$$

Energy loss vs medium geometry+density

• Salgado & Wiedemann PRL89 (2003) model the decreasing medium density with

$$\hat{q} \propto n \propto \left(\left. \frac{dN_{ch}}{dy} \right|_{y=0} \right) / A_{\perp} \tau_0$$
 (Bjorken estimate) $\hat{q} \propto \hat{q}_0 \left(\frac{\tau_0}{\tau} \right)^{lpha}$

- α characterises the medium expansion
- $\tau_0 = QGP$ formation time (assumed $\ll L$)
- Equivalent transport coefficient in static medium:

$$\begin{split} \langle \hat{q} \rangle &= \frac{2}{L^2} \int_{\tau_0}^{\tau_0 + L} \mathrm{d}\tau \left(\tau - \tau_0\right) \times \hat{q}_0 \left(\frac{\tau_0}{\tau}\right)^{\alpha} \simeq \frac{2}{2 - \alpha} \, \hat{q}_0 \left(\frac{\tau_0}{L}\right)^{\alpha} \\ & \longrightarrow \varepsilon \propto \langle \hat{q} \rangle \, L^2 \, \propto \, \tau_0^{\alpha - 1} \frac{\frac{dN_{ch}}{dy}\Big|_{y=0}}{A_T} \times L^{2 - \alpha} \end{split}$$

۲

Medium geometry and density

$$arepsilon \propto au_0^{lpha - 1} rac{rac{dN_{ch}}{dy}\Big|_{y=0}}{A_T} imes L^{2-lpha}$$

• Multiplicities from measurements

Medium geometry and density

$$arepsilon \propto au_0^{lpha - 1} rac{rac{dN_{ch}}{dy}\Big|_{y=0}}{A_T} imes L^{2-lpha}$$

- Multiplicities from measurements
- Path length L and area A_T through 4 Glauber models:
 - MC Glauber from

Loizides, Kamin, d'Enterria, PRC97 (2018)

- 1 pure hard sphere nuclei: constant QGP density, fully analytic
- 2 custom optical Glauber: hard spheres or Woods-Saxon
 - → L less straightforward there:

$$\langle L \rangle = \frac{\int L(\vec{s}, \phi) \rho_{coll} \, \mathrm{d}\vec{s} \, \mathrm{d}\phi}{2\pi \int \rho_{coll} \, \mathrm{d}\vec{s}}$$

Medium geometry and density

$$arepsilon \propto au_0^{lpha - 1} rac{rac{dN_{ch}}{dy}\Big|_{y=0}}{A_T} imes L^{2-lpha}$$

- Multiplicities from measurements
- Path length L and area A_T through 4 Glauber models:
 - MC Glauber from

Loizides, Kamin, d'Enterria, PRC97 (2018)

- 1 pure hard sphere nuclei: constant density, fully analytic
- 2 custom optical Glauber: hard spheres or Woods-Saxon
 - → L less straightforward there:

$$\langle L \rangle = \frac{\int L(\vec{s}, \phi) \rho_{coll} \, \mathrm{d}\vec{s} \, \mathrm{d}\phi}{2\pi \int \rho_{coll} \, \mathrm{d}\vec{s}}$$

Fitting energy loss VS medium geometry

Fit of
$$\beta = 2 - \alpha$$

Fitting energy loss VS medium geometry

Fitting energy loss VS medium geometry

G. Falmagne Hadro

Predictions of $R_{AA}(p_{\rm T})$ at high- $p_{\rm T}$ in various systems

- Knowing dN_{ch}/dη + hypothesis on ⟨z⟩ and C_R
 → can predict ⟨ε̄⟩ in any system! → gives R_{AA}(p_T)
- Uncertainty on ⟨ē⟩ from fit (considering fully correlated energy loss values, overestimated for now)
- Calculations: ALICE $R_{AA}(J/\psi)$ measurement in PbPb 5 TeV:
 - Similar C_R (gluon-dominated) and $\langle z \rangle$ than h^\pm assumed + 20% uncertainty
 - Smaller multiplicity for 2.5 $<|\eta|<$ 4 (+ uncertainty)

Predictions of $R_{AA}(p_{\mathrm{T}})$ at high- p_{T} in various systems

- Knowing dN_{ch}/dη + hypothesis on ⟨z⟩ and C_R
 → can predict ⟨ε̄⟩ in any system! → gives R_{AA}(p_T)
- Uncertainty on ⟨ē̄⟩ from fit (considering fully correlated energy loss values, overestimated for now)
- Calculations: ALICE $R_{AA}(J/\psi)$ measurement in PbPb 5 TeV:
 - Similar C_R (gluon-dominated) and $\langle z \rangle$ than h^\pm assumed + 20% uncertainty
 - Smaller multiplicity for 2.5 $<|\eta|<$ 4 (+ uncertainty)
- Predictions: $R_{AA}(h^{\pm})$ in OO collisions at 7 TeV
 - Multiplicity extrapolated from PbPb and XeXe measurements + 6% uncertainty
 - L and A_T as in other systems
- $\bullet\,$ pPb collisions? Formalism breaks, but predicts $R_{pPb}\gtrsim 0.8-0.9$

Checks of formalism

- Small influence of inhomogeneity on energy loss (constant VS N_{part} QGP density)
 - → Similar results from two models with hard spheres

Checks of formalism

 Small influence of inhomogeneity on energy loss (constant VS N_{part} QGP density)

→ Similar results from two models with hard spheres

- Model assumes same rules for single-particle quantities VS average over active area and centrality
 - → significant influence, to be studied

Checks of formalism

• Small influence of inhomogeneity on energy loss (constant VS N_{part} QGP density)

→ Similar results from two models with hard spheres

- Model assumes same rules for single-particle quantities VS average over active area and centrality
 - → significant influence, to be studied

- Only one parton nature assumed now
 - \rightarrow possible small impact of quark/gluon mix on $R_{AA}(p_{\rm T})$ scaling (to be checked)
- Influence of log(E) corrections on R_{AA}(p_T) scaling?

v₂

- L depends on $\varphi \rightarrow$ path-length dependence of energy loss
- Formalism of custom Glauber model gives energy loss of particles produced at various φ angles
 - $\longrightarrow \varphi$ dependence of suppression from energy loss
 - $\rightarrow R_{AA}(\varphi)$
 - \rightarrow Possible to predict v_2 of hadrons at $p_{\rm T}\gtrsim 10$ GeV (to be done)
- Convergence of v_2 for all species at high p_T ?

Conclusion

- Universal $R_{AA}(p_{\rm T})$ behaviour of hadrons from radiative energy loss
- Extracted energy loss values scale \propto variable describing medium density and geometry → Path length dependence $\langle \varepsilon \rangle \propto \langle L \rangle^1$ consistent with Bjorken (longitudinal) expansion
- All measured systems (PbPb, XeXe, AuAu, 0.2 to 5 TeV) consistent with both scalings

BACKUP

List of measurements

Particle	System	$\sqrt{s_{_{\rm NN}}}$	experi- ment	already in Ref. [2]?	pp fit and centrality classes	Kinematic range
Light charged hadrons h [±]	PbPb	$2.76 \mathrm{TeV}$	CMS	yes	pp , 0-5%, 5-10%, 10-30%, 30-50%, 50-70%, 70-90%	$\begin{aligned} \eta < 1, \\ p_{\perp} < 103 \text{GeV} \end{aligned}$
			ATLAS	no	$\begin{array}{c} 0\text{-}5\%,\ 5\text{-}10\%,\ 10\text{-}20\%,\\ 20\text{-}30\%,\ 30\text{-}40\%,\ 40\text{-}50\%,\\ 50\text{-}60\%,\ 60\text{-}80\%\end{array}$	$\begin{split} & \eta <2,\\ &\text{from }p_{\perp}<95\text{GeV to}\\ &p_{\perp}<150\text{GeV} \end{split}$
			ALICE	no	0-5%, 5-10%, 10-20%,	n < 0.8
		$5.02\mathrm{TeV}$	ALICE	no	20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%	$p_{\perp} < 50 \mathrm{GeV}$
			CMS	yes	$\begin{array}{c} \mathbf{pp}, \ 0\text{-}5\%, \ 5\text{-}10\%, \\ 10\text{-}30\%, \ 30\text{-}50\%, \ 50\text{-}70\%, \\ 70\text{-}90\%, \ 0\text{-}100\% \end{array}$	$\begin{array}{l} \eta < 1, p_\perp < 400 {\rm GeV} \\ (250 {\rm GeV} {\rm for} \\ {\rm centr.} > 70\%) \end{array}$
	\mathbf{XeXe}	$5.44\mathrm{TeV}$	CMS	no	$\begin{array}{c} \mathbf{pp},\ 0\text{-}5\%,\ 5\text{-}10\%,\\ 10\text{-}30\%,\ 30\text{-}50\%,\ 50\text{-}70\%,\\ 70\text{-}80\%,\ 0\text{-}80\% \end{array}$	$\begin{array}{l} \eta < 1, p_{\perp} < 103 {\rm GeV} \\ (48 {\rm GeV} \ {\rm for} \\ {\rm centr.} > 50\%) \end{array}$
π ⁰	AuAu	$0.20~{ m TeV}$	PHENIX	no	рр	y < 0.35, $p_{\perp} < 25 \text{GeV}$
					$\begin{array}{l} 010\%,\ 1020\%,\ 2030\%,\\ 3040\%,\ 4050\%,\ 5060\% \end{array}$	y < 0.35, $p_{\perp} < 20 \text{GeV}$
D	PbPb	$5.02 \mathrm{TeV}$	CMS	yes (except pp)	pp, 0-10%, 0-100%	$\begin{aligned} y < 1, \\ p_{\perp} < 100 \text{GeV} \end{aligned}$
			ALICE	no	$0-10\%, \ 30-50\%, \ 60-80\%$	$\begin{array}{l} y < 0.5, \\ p_{\perp} < 50 \; {\rm GeV} \; (35 \; {\rm GeV} \\ {\rm for \; centr.} > 50\%) \end{array}$
$\mathbf{J}/\mathbf{\psi}$	PbPb	$5.02\mathrm{TeV}$	CMS	no (except 0-100%)	$\begin{array}{c} \mathbf{pp},\\ 0\text{-}10\%,\ 10\text{-}30\%,\ 30\text{-}100\%,\\ 0\text{-}100\%\end{array}$	$\begin{array}{l} y < 2.4, \\ p_{\perp} < 30 \; {\rm GeV} \; (50 \; {\rm GeV} \\ {\rm for \; centr.} \; 0{\rm -}100\%) \end{array}$
			ATLAS	no	$\begin{array}{c} 0\text{-}10\%,\ 20\text{-}40\%,\ 40\text{-}80\%,\\ 0\text{-}80\%\end{array}$	y < 2, $p_{\perp} < 40 \text{ GeV}$

Energy loss in proton-lead collisions?

- The geometric formalism developed for the $\varepsilon \propto \frac{\frac{dN_{ch}}{dy}\Big|_{y=0}}{A_T \tau_0} \times L^{\beta}$ scaling might not be transferable to p-Pb collisions (and the hypothesis $\Delta E \ll E$ breaks)
- However, taking the numerical values from the scaling to measurements, and these ingredients:
 - path length $\langle L \rangle \sim {\it r}_0 \simeq 1~{\rm fm}$
 - transverse area $\langle A_T
 angle = \pi r_0^2 \simeq \pi (1 \ {
 m fm})^2$
 - ullet Measured average multiplicity ~ 22 in p-Pb collisions at 8.16 TeV

$$\rightarrow$$
 $\langle z \rangle \langle \varepsilon \rangle = 0.5 \text{ GeV}$

→ Similar to energy loss in PbPb 5.02 TeV at centralities 60-80%

$$ightarrow$$
 $R_{
ho A} \simeq 0.8 - 0.9$ at $p_T = 10$ GeV

 \rightarrow Comparable or smaller than cold nuclear matter effects (and formalism might not be valid)