

Measurement of the charged-particle jet production in pp

collisions with ALICE

Rencontres QGP France 2022

Yongzhen HOU

CCNU (Wuhan) & IPHC (Strasbourg)

03/05/2022

Multiplicity dependence jet production in pp 13 TeV

Go to Slide 5

Go to slide 15

<u>h+jet measurements in pp 5 TeV</u>

Motivation: why jets

- Jet is defined as collimated spray of particles originating from initial hard scattered partons.
- Jet cross section measurement in pp collisions can be precisely calculated by pQCD.

Motivation: why jets

- Jet is defined as collimated spray of particles originating from initial hard scattered partons.
- Jet cross section measurement in pp collisions can be precisely calculated by pQCD.
- Investigate the splitting function of parton: close to original collimation information.

Motivation: why jets

- Jet is defined as collimated spray of particles originating from initial hard scattered partons.
- Jet cross section measurement in pp collisions can be precisely calculated by pQCD.
- Investigate the splitting function of parton: close to original collimation information.
- Study jet quenching effect in nucleus-nucleus collision.

$$R_{AA} = \frac{dN_{jets}^{AA}/dp_T d\eta}{< T_{AA} > d\sigma_{jets}^{pp}/dp_T d\eta}$$

Motivation: why study high multiplicity jets

- High multiplicity pp events have similar behavior for particle productions as in pA/AA collisions
 - →What happens for jet production in high multiplicity environment: quenching? enhancement?

Jet measurements in ALICE

QGP France 2022

Analysis method

- Event selection: $|V_z| < 10 \ cm + \text{standard Physical Sel.}$
- Event activity categorization: V0M
- Jet reconstruction
 - Hybrid tracks, $p_T > 0.15 \text{ GeV/c}$, $|\eta_{\text{track}}| < 0.9$
 - Charged jets, anti- $k_{\rm T}$, R = 0.2 0.7, $p_{T,jet} > 1.0 \text{ GeV}/c$
 - Bkg estimation: $k_{\rm T}$ algorithm

•
$$\rho = median \left\{ \frac{p_{T,jet}^{k_T}}{A_{jet}} \right\} * C \left(C = \frac{A_{covered}}{A_{tot}} \right)$$

• $p_{T,jet}^{corr} = p_{T,jet} - \rho \cdot A_{jet}$, $\delta p_T = \sum_{RC}^{i} p_{T,i}^{track} - \rho \cdot A$

•Unfolding correction (RooUnfold package: <u>arXiv:1105.1160</u>)

• Cross section normalization ($\sigma_{MB} = N_{evt} / \mathcal{L}_{int}$):

$$\frac{d^2 \sigma^{\text{ch,jet}}}{dp_{\text{T}} d\eta} \left(p_{\text{T}}^{\text{ch,jet}} \right) = \frac{1}{\mathcal{L}_{int}} \frac{N_{\text{jets}}}{\Delta p_{\text{T}} \Delta \eta} \left(p_{\text{T}}^{\text{ch,jet}} \right)$$

Multiplicity percentile estimation

- Select different multiplicity events using forward detector (V0) to minimize auto correlations between event activity estimation and jet measurements
- Using V0M amplitude to categorize event activities

V0M Mult (%)	$dN_{ch}/d\eta$
0-100	6.93+0.09
0-1	26.01+0.34
1-5	19.99+0.24
5-10	16.18+0.20
10-15	13.78+0.18
15-20	12.01+0.16
20-40	9.18+0.10
40-60	5.78+0.06
60-100	2.94+0.03

Eur. Phys. J. C 81 (9, 2020) 630

Raw spectra and unfolding correction for detector effects

- Raw jet p_T distributions in 0-1% interval after UE subtraction
- Detector response matrix (RM) is obtained with MC simulation for jet energy scale and resolution correction
- Using the response matrix to perform unfolding and obtain the corrected jet yield

QGP France 2022

Inclusive jet cross section

• Cross sections are compared with different MC calculations with UE subtraction

QGP France 2022

Multiplicity-dependent jet production and ratio

• Jet production yield and spectra ratios from multiplicity classes to MB events for R = 0.2 - 0.7QGP France 2022 yongzhen.hou@cern.ch

Integrated jet production and average $p_{\rm T}$

- Integrated jet production yield and the average p_T as a function of charged-particle multiplicity density for different radii in given jet p_T range (5 < p_T < 100 GeV/c)
 - Both jet yields and the average $p_{\rm T}$ are increasing with multiplicity

QGP France 2022

Integrated jet production ratio

arXiv:2202.01548

- Integrated jet production ratio (V0M / MB) for different jet radii and jet $p_{\rm T}$ bins
 - No strong jet R and $p_{\rm T}$ dependence on the jet production ratio
- PYTHIA8 simulation could describe the overall increasing trend as seen in data, though overshoot at HM QGP France 2022 yongzhen.hou@cern.ch

Jet spectra ratio with different R

- Jet cross section ratio are increasing with jet $p_{\rm T}$
- No significant collision energy or collision systems dependence when compared to earlier measurements
- No strong multiplicity dependence for smaller radii within uncertainty
- Hint of multiplicity ordered jet ratio for larger radii (0.2/0.6, 0.2/0.7)

Motivation: why study hadron-jets

- Trigger track close to surface, but no bias on recoil jets
- Provide a good handle of combinatorial background by varying trigger track intervals \rightarrow access low $p_{\rm T}$, large *R* jets
- Azimuthal distribution of recoil jets provides additional insight into QGP properties
- Hadron-jet acoplanarity broadening: vacuum (Sudakov) radiation
- Multiple soft scattering in the QGP may further broaden $\Delta \varphi$ distribution

Gives direct access to transport coefficient [Phys. Lett. B 773 (2017) 672]

$$\Delta_{\text{recoil}}(p_{\text{T}},\Delta\varphi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{\text{T,jet}}^{\text{ch}} d\Delta\varphi} \bigg|_{p_{\text{T,trig}}\in\text{TT}_{\text{Sig}}} - c_{\text{ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{\text{T,jet}}^{\text{ch}} d\Delta\varphi} \bigg|_{p_{\text{T,trig}}\in\text{TT}_{\text{Ref}}}$$

Semi-inclusive hadron-jet measurements in pp @ 5.02 TeV

• Measure trigger-normalised yield of recoil jets from a high- p_T trigger

6

Semi-inclusive hadron-jet measurements in pp @ 5.02 TeV

• Measure trigger-normalised yield of recoil jets from a high- p_T trigger

Hadron-jet $\Delta_{\text{recoil}} (\Delta \varphi)$ distributions

• First measurement of the fully-corrected hadron+jet $\Delta \varphi$ distribution in pp collisions at $\sqrt{s} = 5.02$ TeV

• Good agreement of $\Delta \varphi$ distributions between data and different predictions (PYTHIA8 and pQCD prediction¹)

I_{AA} distributions in most central Pb-Pb collisions to pp

- Broadening at low $p_{\rm T}$ for R = 0.4 jets
- Recoil jet yield suppressed at higher $p_{\rm T}$
- **Reasonable description** by JETSCAPE², and calculation including medium-induced $p_{\rm T}$ broadening¹ in $\Delta \varphi$, $p_{\rm T}$

 $I_{\rm AA} = \Delta_{\rm recoil}^{\rm Pb-Pb} / \Delta_{\rm recoil}^{\rm pp}$

Summary and conclusion

- Multiplicity dependent jet production in pp collisions at 13 TeV has been measured in ALICE
 - Paper link: <u>arXiv:2202.01548</u>
 - Inclusive jet cross section using different resolution parameters (R = 0.2 0.7)
 - Multiplicity dependent jet production in different V0M multiplicity percentile
 - Integrated jet production yield and average $p_{\rm T}$ as function of multiplicity
 - Integrated jet production ratio with respect to MB one
 - Jet production ratio using 0.2 divided other jet resolution parameters
- Semi-inclusive recoil jet measurements via hadron-jet correlations
 - **fully-corrected** hadron+jet $\Delta \varphi$ distribution, quantitatively reproduced by PYTHIA
 - broadening and suppression of back-to-back hadron-jet correlation in most Pb-Pb collisions

Thanks for your attention!

Response matrix combination

- Detector response matrix is obtained with MC simulation for jet energy scale and resolution correction
- Using δp_T distribution for background response matrix, and obtain the combined response matrix by $RM_{full} = RM_{bkg} \times RM_{det}$
- Using the response matrix to perform unfolding and obtain the corrected jet yield

QGP France 2022

Systematic uncertainty estimation

Uncertainty resources	how to estimate
track efficiency	varing tracking efficiency by -3%
unfolding	different generators, iterations, different methods(Svd/Bayes)
secondary particles	varying the DCA threshold of track selection (jet $p_T \pm 0.5\%$)
track $p_{\rm T}$ resolution	varying tracking resolution by $\pm 20\%$
Bkg subtraction	using different method to estimate δp_T
normalization	taking from luminosity paper (MB results)
multiplicity estimation	RM build from MC in multiplicity bins
total	add in quadrature

TT ratios

- IAA has a slightly TT-dependence
- This technique becomes a very interesting way to study the interplay between hadron and jet suppression