Cluster shape analysis and strangeness tracking for the ALICE upgrade

Alexandre BIGOT, 1st year PhD student

QGP France 2022, May the 4th (be with you)

Cluster shape analysis of the cosmic-ray data collected during surface commissioning of the ALICE Inner Tracking System (ITS2)

under the supervision of Iouri BELIKOV

4/31

- ~ 500k pixels per chip
- ~ 24k chips on the detector
- ~ 12G pixels on the detector

Cluster of 2 pixels

I) Track candidates selection

II) Cluster shape analysis

III) Comparison with Monte-Carlo data

5/31

"decision value" determined graphically (~0,1)

6/31

Suppression and selection

selected candidates

QGP France, 04.05.22, A.BIGOT

7/31

Inclination angles

3D view

Plane (x,y) view

Plane (y,z) view

QGP France, 04.05.22, A.BIGOT

~6 M track candidates

Inclination angles

QGP France, 04.05.22, A.BIGOT

I) Track candidates selection

II) Cluster shape analysis

III) Comparison with Monte-Carlo data

9/31

Motivations

Some shapes offer a better precision on position

It could help the tracking algorithm

Example of cluster-track assignment ALICE

- Track reconstructed on layer 5 and the algorithm looks for the next cluster on layer 4;
- Several possible clusters:

 Track orthogonal to the sensor surface → cluster shape distribution as a function of inclination angles offers a finer selection of the next cluster:

>

Example

ALICE

12/31

12/31

Cluster shape = $f(\lambda)$

 $|\psi| < 10^{\circ}$

 $|\psi| < 10^{\circ}$

Cluster shape = $f(\lambda)$

 $|\psi| < 10^{\circ}$

ALICE

QGP France, 04.05.22, A.BIGOT

^{14/31}

QGP France, 04.05.22, A.BIGOT

y'

 \mathcal{Z}

presence probability

presence probability


```
ALICE
```

 $|\lambda| < 10^{\circ}$

y'

15/31

presence probability

 \mathcal{X}

y'

I) Track candidates selection

II) Cluster shape analysis

III) Comparison with Monte-Carlo data

16/31

Real data vs simulated data

- Bias = potential difference applied to the width of a chip's semiconductor to compensate the effects of radiation damage
- Inner Barrel (IB): with bias and without bias
- MC : ~ 10 M tracks generated

Measure of difference

$$l_{\lambda} = \sum_{i=1}^{n_{\text{bin}}} \frac{\left[N_{\lambda}(i) - N_{\lambda}^{\text{MC}}(i)\right]^2}{N_{\lambda}(i) + N_{\lambda}^{\text{MC}}(i)}$$

17/31

A Large Ion Collider Experiment

Real data vs simulated data

18/31

A Large Ion Collider Experiment

Real data vs simulated data

ALICE

18/31

A Large Ion Collider Experiment

Real data vs simulated data

18/31

A Large Ion Collider Experiment

Real data vs simulated data

18/31

ALICE

A Large Ion Collider Experiment

Real data vs simulated data

ALICE

A Large Ion Collider Experiment

MC more reliable

Real data vs simulated data

A Large Ion Collider Experiment

ALICE

MC better reproduces real biaised data than real unbiaised data

18/31

A Large Ion Collider Experiment

Real data vs simulated data

Differences between MC and real data rise when inclination increases

ALICE

A Large Ion Collider Experiment

Real data vs simulated data

 \rightarrow improve the Monte-Carlo code

18/31

ALICE

Conclusions

- Suppression of background noise (noise map)
 + selection of track candidates
- Cluster shape analysis as a function of track inclination
 - will help the tracking algorithm
- Monte-Carlo simulation and comparison with real data
 - calls for improvements of the Monte-Carlo code

Conclusions

Suppression of background noise (noise map)

+ track candidates selection

- Cluster shape analysis as a function of track inclination
 - will help the tracking algorithm
- Monte-Carlo simulation and comparison with real data

next step

Bias has to evolve through time \rightarrow work in progress in the MC code

19/31

A Large Ion Collider Experiment

Strangeness tracking in ALICE 3:

21/31

Adapted from D. Chinellato

Motivations

Goal: analysis prototype using a state-of-the-art detector (ALICE 3)

The ultimate goal: study the evolution of the **b** quark through QGP

Simulating collisions

- New ALICE software: Online/Offline (O2)
- 1 minimum bias Pythia event (up to 1 particle of interest), pp collision @ 13 TeV
- GEANT3 propagator
- Simulating hits: TRK geometry (beam pipe+ALICE3)

 $\overline{5.797}$

Simulating collisions

Generation of the particle of interest

Name

 $\Xi_b^- (\mathsf{dsb})$

$$\Xi_b^- \to (\Xi_c^0 \to \Xi^- \pi^+) \pi^-$$

Name	mass (GeV/c^2)
$\Xi_b^- \; (dsb)$	5.797
Ξ_c^0 (dsc)	2.470
$\Xi^-~(dss)$	1.3217
$\pi^-~({ar u}{\sf d})$	0.139
$\pi^+~({\sf u}ar{\sf d})$	0.139

carries the benefits of strangeness tracking

$\Xi_b^- \to (\Xi_c^0 \to \Xi^- \pi^+) \pi^-$

Name	mass (GeV/c^2)
$\Xi_b^- \; (dsb)$	5.797
Ξ_c^0 (dsc)	2.470
$\Xi^-~(dss)$	1.3217
$\pi^-~(ar{u}d)$	0.139
$\pi^+~(\mathrm{u}\bar{\mathrm{d}})$	0.139

Primary vertex

$$\Xi_b^- \to (\Xi_c^0 \to \Xi^- \pi^+) \pi^-$$

Name	mass (GeV/c^2)
$\Xi_b^- \; (dsb)$	5.797
Ξ_c^0 (dsc)	2.470
$\Xi^-~({\sf dss})$	1.3217
$\pi^-~(ar{u}d)$	0.139
$\pi^+~({\sf u}ar{\sf d})$	0.139

Primary vertex

repeat it for more than 2M events

Topological observables

 π

Strangeness tracking usability

Improvement in DCA resolution by strangeness tracking

Strangeness tracking on $\Xi^- \rightarrow$ reduces combinatorial background

Background: generation of primary Ξ_c^0 instead of Ξ_b^- and no decay channel imposed

Topological cuts

Main result

Majority of background is reduced \rightarrow functional analysis prototype

Global conclusions

- 2 different studies:
 - ◆ Cluster shape analysis → improvement of MC
 - Strangeness tracking → viable analysis prototype offering efficiency and precision in the reconstruction procedure → towards production cross section

ALICE 3 Letter of Intent https://cds.cern.ch/record/2803563

- Preparing the field to study interaction of b quark with QGP
 - \rightarrow future ALICE data (run 3 of LHC starting in June)

PhD subject

Study of open beauty production in the ALICE detector at LHC

Backup Stage Master 2

Backup for I)

Some figures

ITS:

Active surface ~10 m² (75% on the last 2 layers)

 ~12G pixels
 up to ~200 kHz
 gigantic camera (up to 200 000 photographs per second)

Commissioning of the ITS (Nov.2019-Dec.2020):

- ◆ ~1 day for the Outer Barrel (@11 kHz) \rightarrow ~1G triggers
- ◆ ~7 days for the Inner Barrel (@44 kHz) \rightarrow ~25G triggers

Some figures

Table 1.1: Geometrical parameters of the upgraded 115.							
	Inner Barrel Inner Layers			Outer Barrel			
				Middle Layers		Outer Layers	
	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6
Radial position (min.) (mm)	22.4	30.1	37.8	194.4	243.9	342.3	391.8
Radial position (max.) (mm)	26.7	34.6	42.1	197.7	247.0	345.4	394.9
Length (sensitive area) (mm)	271	271	271	843	843	1475	1475
Pseudo-rapidity $coverage^{a}$	± 2.5	± 2.3	± 2.0	± 1.5	± 1.4	± 1.4	± 1.3
Active area (cm^2)	421	562	702	10483	13104	32105	36691
Pixel Chip dimensions (mm^2)				15×30			
Nr. Pixel Chips	108	144	180	2688	3360	8232	9408
Nr. Staves	12	16	20	24	30	42	48
Staves overlap in $r\phi \ (mm)$	2.23	2.22	2.30	4.3	4.3	4.3	4.3
Gap between chips in z (µm)				100			
Chip dead area in $r\phi \ (mm)$				2			
Pixel size (μm^2)	$(20 - 30) \times (20 - 30)$			$(20 - 50) \times (20 - 50)$			

Table 1 1. Competized perspectors of the upgraded ITS

^a The pseudorapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point (z = 0).

A Large Ion Collider Experiment

Photo of a half barrel (during ITS commissioning)

Cross section of a pixel

34

35

Why calibrating ?

37

37

(on more than 12 billions pixels for each measurements series)

Map of pixels

38

(on more than 12 billions pixels for each measurements series)

Noisy pixel = pixel activated more than once during a measure

Map of pixels

(on more than 12 billions pixels for each measurements series)

Pixel activated once or not activated

Map of pixels

(on more than 12 billions pixels for each measurements series)

Noisy pixel = pixel **activated more than once** during a measure

Selection on candidates' rate

A Large Ion Collider Experiment

Correlation peak

Noise map

Candidates selection

QGP France, 04.05.22, A.BIGOT

40

Inclination angles

λ défini globalement

A Large Ion Collider Experiment

Y

Construction of the angle ψ

41

Backup for II)

Backup CERN Summer Student Programme

Efficiency

DCA between daughters

FIGURE 6 – DCA between the daughters of Ξ_b^- (6a) and Ξ_c^0 (6b) for the signal (in blue) and the background (in red).

DCA to primary vertex

FIGURE 7 – DCA to the primary vertex of Ξ_b^- (7a and 7b) and Ξ_c^0 (7c and 7d) for the signal (in blue) and the background (in red).

Majority of background noise is reduced \rightarrow nice peak \rightarrow functional analysis prototype