Sarah Herrmann

04/05/2022

MEETING QGP FRANCE **PSEUDORAPIDITY DENSITY IN LHC RUN3** WIHALICE

OUTLINE

The MFT and ITS in ALICE

- MFT global performance plots
- Introduction to the $dN_{ch}/d\eta$ study
- Pseudorapidity density results

MFT AND ITS INSIDE THE RUN 3 ALICE DETECTOR

MFT = new detector (installed in the ALICE cavern in 2020)

S. Herrmann

ITS 2 (INNER TRACKING SYSTEM)

- Seven cylindrical detector layers (from R = 22 mm to R = 400 mm) with CMOS* pixel sensor
- η coverage [-1.2; 1.2]

S. Herrmann

TS 2 goals :

- Reconstruct the primary and secondary vertices
- Track and identify charged particles at mid rapidity with a low p_T cutoff.

* CMOS : Complementary Metal-Oxide-Semiconductor

THE MFT (MUON FORWARD TRACKER)

- Si-tracking detector, 5 disks, CMOS* pixel sensors
- Nominal η acceptance of the MFT : [-3.6; -2.5]
- Goal :
 - Add vertexing capabilities to the muon spectrometer
 - Extend the internal tracking to the forward rapidity region
 - Precise measurement of angular variables (not of p_T)

* CMOS : Complementary Metal-Oxide-Semiconductor

MFT PHYSICS GOALS

Provides a separation between prompt and displaced muon production, allowing for the study of :

- in-medium charmonium dynamics (dissociation and regeneration)
- thermalization of heavy quarks in the medium
- medium density and the mass dependence of in-medium parton energy loss

measurement of production of prompt J/ψ and $\psi(2S)$, R_{AA}

measurements of the elliptic flow v_2 for charm, beauty and prompt charmonium

charm & beauty p_T - differential production yield

DISK OCCUPANCY: DISK O

- Pilot beam : short proton-proton run at center of mass energy of \sqrt{s} = 900 GeV, October 2021
- Cluster y versus x for each MFT disk 0
 - Top plot: Pilot beam data
 - Bottom plot: MC

Y versus X of clusters in the disk 0

MFT PERFORMANCE PLOTS: RECONSTRUCTED TRACKS

- MFT track means 1 hit in at least 4 different MFT disks
- Structures in the data due to misalignment

S. Herrmann

Waiting for the alignment

MFT PERFORMANCE PLOTS

Is the MFT precise in measuring the angular coordinates of the reconstructed tracks ?

Phi Rec Vs Phi Gen of true reco tracks

• Good correlation between generated and reconstructed η and ϕ

Eta Rec Vs Eta Gen of true reco tracks

MFT PERFORMANCE PLOTS: GEOMETRICAL ACCEPTANCE

Definitions :

- N^{MFT}_{Trackable}: Number of MFT trackables. Tracks with clusters in at least 4 MFT disks; reference is MC.
- N^{MFT}_{Rec}: Number of Reconstructed
 MFT tracks
- N^{MFT}_{True}: Number of Reconstructed MFT tracks with correct MC labels (> 80% of clusters from same MC label)

 $A^{MFT} = N_{Trackable}^{MFT} / N_{Gen}^{MFT}$

1	Π
	U

MFT PERFORMANCE PLOTS

 $\epsilon^{MFT} = N_{Rec}^{MFT} / N_{Trackable}^{MFT}$

The MFT is able to reconstruct tracks in the η range : [-3.6; -2.3] with a good purity

MFT tracking purity as a function of η and ϕ

11

DEFINITION : PSEUDORAPIDITY DENSITY

sensitive to partonic structure of the colliding particles and non-linear QCD evolution

Allow us to test detectors and O²*

$$\frac{1}{N_{events}} \frac{dN}{d\eta} \bigg|_{\eta=\eta'} = \frac{\int_{z_{min}(\eta')}^{z_{max}(\eta')} N_{trk}(z,\eta')/\epsilon_t}{\int_{z_{min}(\eta')}^{z_{max}(\eta')} \sum_N N_{evt}(z,N)/\epsilon_t}$$

* Online-Offline computing system in ALICE

S. Herrmann

- Pseudorapidity density $\frac{1}{N_{events}} \frac{dN_{tracks}}{dn}$ (multiplicity distribution versus η)
- Common observable, used to estimate particle production and event activity. It is

- ϵ_{evt} : event reconstruction Efficiency x Acceptance
- *z* : z position of the primary vertex of the collision

CORRECTIONS FOR THE MULTIPLICITY MEASUREMENT

- Two observables to get the $dN_{ch}/d\eta$: N_{ch} and N_{evt}
- 2 types of correction
 - Track to particle correction (difference between the number of measured tracks and the number of primary charged particles)
 - Triggering efficiency correction (depends on the event class)

Track and event level

Track level

PERFORMANCE PLOTS

- Track selection : MFT track (1 hit in at least 4 different MFT disks)
- For correction we chose the following cuts :
 - $|Z_{vtx}| < 12 \text{ cm}$
 - ► -3.6 < η < -2.5
 - No DCA cut

We need anchored MC sim

S. Herrmann

Data

Simulation

PERFORMANCE PLOTS

S. Herrmann

η

PERFORMANCE PLOTS

- We study the INEL* event class
- Number of events versus primary vertex position

* INEL : All inelastic events

S. Herrmann

PSEUDORAPIDITY DENSITY RESULTS FOR MFT AND ITS

- 4.5 ևp/Np Event selection based on FT0* timing
- No systematic uncertainties yet 3.5 for the MFT data points (e.g : strangeness correction ~6% and ambiguous tracks)
- 2.5 No correction for the diffractive content yet

*FT0 : coincidence between FT0-A and FT0-C

S. Herrmann

Eur.Phys.J.C 77 (2017) 33

CONCLUSIONS

- The MFT is working as expected
 - Still need alignment
- - Diffraction tuning when process flags are available in O²
 - Strangeness content
 - Anchored MC simulation
 - Ambiguous tracks : need a dedicated study
- Final goal : Pseudorapidity density between -3.6 et 1.2 combining ITS and MFT measurement at 0.9 and 13.5 TeV (coming soon)

• The dN/dŋ study still is a work in progress, systematic uncertainties not computed yet

FUTURE PROSPECTS: FURTHER EXPLOITING STANDALONE MFT

- Finding jet-like structures within the MFT acceptance to characterize hard fragment production at forward rapidity
- - rapidity observables

MFT allows to separate space phase of a certain signal from the underlying event phase space and then consequently to do correlations between these 2

Characterisation of the forward underlying event to estimate the flow of mid-

THANKS FOR YOUR ATTENTION

EFFECT OF PREALIGNMENT

Study made by Robin

Ideal geometry

S. Herrmann

ITS PERFORMANCE PLOTS

• ITS number of tracks vs Z_{vtx} and η

S. Herrmann

STRANGENESS UNCERTAINTY

- Monte Carlo event generators, used to produce simulations, slightly multiplicity definition used by the ALICE Collaboration excludes decay products of strange particles.
- $N_{track}^{rec}(Z,\eta)$ needs to be adjusted so that amount of secondary tracks from strange decay products is matched to data.
- Corresponding uncertainty is evaluated by varying the adjustment factor.

Anton's Analysis Note, 2017 on pseudorapidity density measurement with O₂ in Run 3 pilot beam data

underestimate the amount of strange particles produced. Charged particle

DIFFRACTIVE PROCESSES

In pp collisions, some interactions are diffractive

EPJ Web of Conferences 90, 06004 (2015)

