

Benjamin Audurier - Rencontres QGP France - Tours, 4 mai 2022

Prospectives LHCb

« I wish there were less experimental talks » - a rookie PhD student in theory.

*<u>benjamin.audurier@cern.ch</u>

I. The past II. The present III. The future

The past

The LHCb detector

<u>10.1142/S0217751X15300227</u>

The LHCb detector

<u>10.1142/S0217751X15300227</u>

Fixed-target mode: unique at LHC!

- Injecting gas in the LHCb VErtex LOcator (VELO) tank
- Noble gas only : He, Ne, Ar, Kr, Xe
- Gas pressure : 10⁻⁷ to 10⁻⁶ mbar

The futur planed by the LHC

2	202	1						2	0	2	22	2								2	0	2		3								2	0)2	22	4					
JFMAN	נע	AS	ON	D	J	F۱	٩A	۱M	J	J	Α	S	0	N	D	J	F	Μ	Α	Μ	J	J	A	S	C)	ID)]	JF	M	1 A	Μ	IJ	J	A	١S	SC	۶N	I C	נו	I F
																							F	 זו	 	n	3														

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

The present

[CERN-LHCC-2012-007]

New electronics for muon and calorimeter systems

- * Upgrade based on pp collision requirements :
 - Collision rate at 40 MHz.
 - Pile-up factor $\mu \approx 5$
- * Full software trigger.
 - Remove L0 triggers.
 - Read out the full detector at 40 MHz.
 - Replace the entire tracking system.

Trigger scheme

• Run 3:

- Tracking only on GPUs.
- First trigger selections based on tracking only.

• More complexe trigger selection possible.

Tracking system: Vertex Locator (VELO)

- * Silicon pixel detector, $41 \text{ M} 55 \times 55 \mu m^2$ pixels.
- Closest pixels at 5.1 mm from the beam line. •
- Aluminium foil to protect the Velo without interfering with the beam.
- * Sensors to be kept $< -20^{\circ}$ C
- * Total data rate : 2.8 Tb/s

Tracking system: Upstream Tracker (UT)

- * 4 stations with x-u-v-x layers of silicon micro strip detectors.
 - Sensors with 512 or 1024 strips (4 different types).
 - ➡ 68 staves / 968 sensors.
- * Replace the TT system.

Tracking system: Scintillating fibre tracker (SciFi)

- * ~10000 km of scintillating fibres arranged in 6 layers with silicon photo-multipliers (SiPM) readout.
 - ➡ 3 stations.
 - 4 detection layers per station arranges in x-u-v-x configuration per stations.
 - \rightarrow 10 modules of 2x4 mats.

Run 3 and Run 4 prospects for heavy-ion physics with LHCb

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

SMOG2 versus SMOG1

*	SMOG2	
	€ [-500;-3	>>

- Well defined interaction region.
- Increase of target density (luminosity) by up to 2 orders of magnitude using the same gas load of SMOG.
- Gas feed system measures the **gas density with few** % **accuracy**.
- Possibility
 Ar).
- More sophisticated Gas Feed System: will allow to measure the target density (and luminosity) with much higher precision.
- Possibility to run in parallel of pp collisions and inject non noble Gaz.

Projection of ~1 year data taking in parallel mode.

Int. Lum	i.	80 pb-1
Sys.erro	r of J/Ψ xsection	~3%
J/Ψ	yield	28 M
D^0	yield	280 M
Λ_c	yield	2.8 M
Ψ̈́	yield	280 k
$\Upsilon(1S)$	yield	24 k
$DY \mu^+\mu^-$	- yield	24 k

(<u>TDR</u>) : Standalone gas storage cell covering z 00] mm :

- Possibility to inject more gas species: H, D, He, N, O... (SMOG: He, Ne,

Status of SMOG2

The cell is in place and ready for commissioning !

Run 3 prospects for SMOG2 with LHCb

Rapidity scan

Deep in the hadronic structure

The future

Objectives: same performance as in Run 3!

187 pages long, I will only present the main challenges faced by some detector

Phase II in a nutshell

The Polarised Gas Target: LHCspin

- Compact dipole magnet static \rightarrow transverse field.
- Superconductive coils + iron yoke configuration fits the space constraints.
- → $B = 300 \text{ mT}, \Delta B / B \approx 10 \%$, with polarity inversion.
- * Achievable Luminosity (HL-LHC): ~ $8 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

pp bunch-crossing

pp bunch-crossing + 20 *ps resolution*

Possible design for the new VELO

VELO upgrade

- Aligned time [ns]
 - -0.070
 - -0.075
 - -0.080
 - -0.085
 - -0.090

challenges

- huge impact on the design and R&D.
- **Track timing will be crucial**
- * Performance contrains:
 - 9-12 μm spatial resolution.
 - ➡ 4D tracking with 50 ps timestamp...
 - ... and of course radiation hardness (~ 6 × $10^{16} \,\mathrm{MeV} \,\mathrm{n_{eq}}/\mathrm{cm_2} \mathrm{for} \, 350 \, \mathrm{fb^{-1}})$
- * Pixel technology under developments, as well as alternative solutions.

Upstream Tracker

* UT in LHCb:

- Ghost rate reduction.
- Tracking efficiency.
- Design constrains:
 - → pp data: data-rate \rightarrow 9 Gbps.
 - → PbPb data: maximum occupancy \rightarrow 50 hits/cm².
- * Paramètre d'optimisation :
 - ➡ Hardware :
 - Chip technology, module design
 - Software :
 - Algorithms developments.

Magnet Tracking Station

- * Proposal for tracking station inside the magnet.
 - Increase coverage of Upstream tracks.
 - Physics motivations : <u>access to converted photons.</u>
- * Technology:
 - Triangular Extruded Scintillating Bars (same as D0)
 - Ongoing R&D in LANL.
- * **Proposing the installation of a small prototype** inside the magnet during LS3.

* Mighty tracker : biggest silicon tracker built by LHCb.

- LS3: Inner Tracker + Scifi
 - Limited change to SciFi
- LS4: New mighty silicon tracker covering larger area
 - Rebuild of SciFi + reuse IT
- * Hybrid technology detector, many challenges !

Very similar to the UT -> joined development is likely.

Conclusion

- * Lessons learned from run I run II :
 - LHCb fully performant in peripheral HI collisi
 - Main limitations : tracking
- * Expectations for LHCb upgrade I :
 - New tracking detectors + algorithms benefit H
 - LHCb can reconstruct particles up to ~30% centuring !
- * LHCb Upgrade II (U2):
 - Brand new detector with no hardware limitation
 physics.
 - Expansion of the fixed-target program with po

	Cost of Upg	<u>grade 2</u>		
ions.	Detector	Baselin		
		(kCHF		
	VELO	1480		
	\mathbf{UT}	890		
	Magnet Stations	230		
II collisions !	MT-SciFi	2240		
	MT-CMOS	1950		
ntrality without specific	RICH	1560		
	TORCH	990		
	\mathbf{ECAL}	3480		
	Muon	710		
	RTA	1740		
ons foreseen for heavy-ion	Online	890		
	Infrastructure	1350		
	Total	17510		
olarised target!				

PID detector system: RICH

- * RICH requirements:
 - Occupancy bellow 30% in RICH1.
 - $\sigma_{\theta} > 0.5$ mrad.
 - Timing!
- * RICH1 geometry:
 - New photo-detectors and readout chain.
 - Reducing the tilt of spherical mirror \rightarrow place mirror inside LHCb's acceptance.
 - R&D ongoing to have light-weight carbon-fibre design

RICH1 peak occupancy	MaPMT	SiPM and geometry update
Upgrade I	35~%	3.9~%
Upgrade II	>100~%	18~%

TORCH - Low momentum PID

- * TORCH is a large area time of flight detector that is designed to provide PID in the GeV/c momentum range
 - Considered for use in Upgrade Ib.
 - Exploit prompt production of Cherenkov light in a quartz radiator plate to provide a fast timing signal.
 - Aim for a resolution of 10-15 ps per track
 - A large-scale prototype has been developed.
 - Good separation between between π/K/p is possible in 2-10 GeV/c range.

Half-scale demonstrator

PID detector system: ECAL

- * Upgrade schedule:
 - LS3: replace modules around beam-pipe.
 - LS4: rebuilt the high occupancy
 'belt-region' and include timing
- Studies on module's technology ongoing.

PID detector system: muon

- * Main considerations:
 - Data rate too high for the current granularity.
 - No more shielding from HCal …
- * General structure will remain the same with two different technologies:
 - μ -RWELL detectors for the high rate regions.
 - MWPC detectors for the low-rate regions.
- Studies ongoing to optimise granularity + new shielding.

Tracking in LHCb

- * Many types of tracks in LHCb, the most important ones are
 - Long tracks.
 - Downstream tracks
- * Tracking algos :
 - Forward Tracking algorithm.
 - Combine VELO seeds with hits in the T-stations
 - Matching algorithm.
 - Match VELO tracks and seeds from T-stations

New Tracking Algorithm

Our Approach

- Kink point, and hits in search window to \succ find doublet (red hits)
- For doublet, add station 3 U-V hits and \succ extend to station 2 to find x hits (yellow hits)
- If requirements satisfied extend add 2nd \succ station U-V hits and 1st station hits (orange & green hits), UV only if 2 X-hits

- All extrapolations to stations 1 and 2 are \succ done via polynomials trained on MC
- Once all hits are found, a fit of ONLY the \succ x-hits is performed and a linear discriminant is used to reject ghosts