

Upgrade of the LHCb Tracking system Hardware requirements and technological status

Stefano Matthias Panebianco CEA – Université Paris Saclay

LHCD THE TRACKING SYSTEM UPGRADE

Sensor	A	B	С	D
Туре	p-in-n	n-in-p	n-in-p	n-in-p
Thickness(µm)	320	250	250	250
Pitch (μm)	187.5	93.5	93.5	93.5
Length (mm)	~100	~100	~50	~50
Strips/sensor	512	1024	1024	1024
SALTs/sensor	4	8	8	8
Numbers	888	48	16	16

- Four planes of silicon strip detectors, readout ASICs at sensor proximity.
- □ Higher segmentations near the center. Max occupancy ~ 1.4%.
- Stave structure: modules on 2 sides for overlapping, readout at 2 ends.
- □ In total 68 staves, 968 sensors, 4192 ASICs.

The present UT upgrade

UT is key to connect VELO and MIT track segments UT is essential for Upstream and Downstream tracks Possibility of standalone UT track segment

- Will likely require three UT stations
- Could improve and speed-up track matching
- Could provide momentum estimation

Need of timing is being studied

- Minimum requirement: BX identification, few ns time resolution
- Tracking: e.g. background rejection, sub-ns time resolution

Need to handle high-occupancy of most central Pb–Pb collisions

Solution: replace the Si strips with CMOS MAPS

Large interest within the French HI community and beyond...

- ► LLR, LPNHE, Irfu, Subatech,...
- Several labs in China

- $\int \mathscr{L} = 300 \text{fb}^{-1} \Rightarrow \text{significant fibre radiation damage in inner region}$
- ℒ_{inst} = 1.5×10³⁴ cm⁻² s⁻¹
 ⇒ very high occupancy (up to 20%/fibre/event)
 ⇒ SciFi must be replaced near beam pipe to maintain the same (or better) tracking performance
- Solution: instrument the inner region with a pixel detector, while keeping scintillating fibres in the outer region

(Distinguish between Inner and Middle regions because LHCb is exploring the option to install Inner part for Run4)

SciFi enhancement

Major improvement seen cryogenic cooling to allow to run below -120 °C

- Essential to maintain reasonable noise rate for SiPMs after irradiation
- Should allow to reduce the cluster thresholds while keeping acceptable dark count rate

Additional interface ~ 16 % loss in light

Can gain back ~ 20 % by microlens. Geometry packing of SiPMs also improved

SciFi-CMOS integration

- SciFi layers and station layout similar to Upgrade 1 (modulo cryogenic cooling and mounting of layers on individual C-frames)
- Silicon layer panels (+ services) mounted on front and back of first/last x-layers in each station
- Panels integrated into Airex support box that provides thermal isolation (allowing operation below
 - 0° C)

Services for Silicon run across Fiber acceptance Care needed with material budget

Fred Blanc

Alex Bitadze, Trevor Savidge

Two main CMOS options under consideration

Large collection electrode (baseline for the MT)

- Typical pixel size: 50 x 150 μm^2
- Circuitry inside the collection well (requires high field: HV-CMOS)
- High radiation hardness
- Higher noise (high capacitance)
- Higher power consumption
- Possible cross-talk (digital to sensor)
- Presently developed under AMS-180 (MuPix, ATLASPix) and LF-150 technologies (Monopix2)

Small collection electrode (baseline for the UT)

- Typical pixel size: 30 x 30 µm²
- Circuitry outside the collection well (requires low/moderate field: LV-CMOS)
- High radiation hardness thanks to process modification (increase of depletion zone)
- Lower noise (low capacitance)
- Lower power consumption
- Less sensitive to cross-talk
- Presently developed under TJ-180 (Monopix2, MALTA2)

Main advantages

- Excellent space resolution
- Low budget
- Good radiation hardness
- High integration in monolithic technology

Main challenges

- Readout architecture for very high hit rate
- Provide high radiation tolerance
- Improve time resolution (eventually to sub-ns range)
- Keep low power consumption

Final choice on MAPS technology will be based on refined and consolidated detector specifications and R&D

180nm standard imaging technology process

- Monolithic design with small capacitance
- P-well changes electric field and charge collection in active sensor volume
- Placement of full circuitry inside pixel matrix in well separated from collection electrode
- Even with high resistivity epi-layers (few $k\Omega \cdot cm$) and maximal sensor bias voltage, the depletion in the standard process is very limited
- Limited depletion and small sensor junction
 - Bias voltage limited by circuitry
 - Significant contribution from diffusion
 - Excellent position resolution
 - Reduced charge collection time: reduced radiation tolerance and time stamping capability
 - Reduced seed signal: reduced efficiency (even before irradiation)

- Small collection electrode (~ 3 μm²)
- Small input capacitance (< 5 fF)
- High signal to noise ratio (~ 20)
- Charge collection time ~ 30 ns

- High resistivity (> 1 k Ω ·cm) p-type epi-layer
- Bias voltage: 1.8 V
- Reserve bias (up to -6 V) for augmented (though not complete) depletion
- Small depletion depth (~ 30 μ m) $d \sim \sqrt{
 ho \cdot V}$

180nm modified imaging technology process:

- From MAPS to DMAPS
- Add large planar deep low/medium dose nimplant
- Large sensor junction
 - Full lateral depletion
- Maintain small capacitance
- No main modification to the circuitry and layout
- Isolation of P-wells and substrate
 - Substrate voltage non-limited by circuitry, higher sensor bias (tenth of volts)
- Better radiation tolerance
- Examples: TJ-MONOPIX and MALTA (for ATLAS)

What can we expect from TJ-65?

- Very active developments (CERN)
- Prototype run ongoing: results to come
- At first order: increase pitch/thickness and reduce power consumption for a given circuitry

THE TJ-CZOCHRALSKI PROCESS

- From DMAPS to FDMAPS
 - From gas phase (epi) to liquid phase (Czochralski Cz) epitaxial growth
- Increase the depletion layer thickness
 - Epi-layer thickness: 30 μm
 - Cz-layer thickness: 300 μ m
- Keep high resistivity: 800 Ω ·cm
- Can operate at 50 V reverse bias for full depletion
- Increase charge collection
- Maintain small capacitance
- No modification to the circuitry and layout
- Even better radiation tolerance and time resolution
- Tested on MALTA (MALTA-2)

Present focus of French labs

Present focus of MT

- Rather low-resistivity substrate (< 20 Ω ·cm) and no epi-layer
 - Radiation induced N_{eff} almost insignificant
- Small thickness depletion zone (~ 10 $\mu\text{m})$
 - Drift signal $\sim 1000 \text{ e}^{-1}$
- High breakdown voltage allows HV ~ 100 V
- Diode capacitance is rather high
- Circuitry requires rather high power consumption
 - Charge sensitive amplifier with gain independent on C_D

Serial configuration

R/O controller

Data

receiver

LF-Monopix

FPGA

READ

ReadInt

- First developed in AMS-350 technology (MuPix), then in AMS-180 (ATLASPix) with no digital circuitry in the matrix
 - Limit the power consumption
 - Readout scheme very complex and rate-limited (4-bit DAC for threshold adjustment): digital pulse brought to the periphery for ToT measurement
 - Large pixels (130 x 130 μm^2) with a matrix made of N_{raw} = N_{col} = 400
- Then in LF-150 (Monopix) with:
 - High resistivity (< 20 Ω ·cm) substrate
 - Large pixels (50 x 250 μ m²) with a 129x36 matrix
 - CSA with 4-bit DAC for threshold adjustment (as for Mupix) plus in-pixel digital treatment (ToA and ToT)
 - Column drain architecture with 24-bit bus
 - Very large static current required for the circuitry (avoided during the readout phase)

14

The MightyPix

- Monolithic Active Pixel Sensor (MAPS)
- Integrated pixel sensor & chip on **single** piece of silicon
 - Low-cost commercial process
 - e.g. used for mobile phone cameras
- First radiation hard CMOS tracker at LHC
- Chip based on existing MuPix/ATLASPix
- <u>https://arxiv.org/abs/2002.07253</u>
 - "MightyPix" Specification document in preparation

Parameter	Depleted CMOS Sensors for LHCb
Chip Size	$\sim 2\mathrm{cm} \times 2\mathrm{cm}$
Sensor Thickness (μm)	200 (ATLASPix3)
Pixel Size (µm)	100×300 (with smaller sizes to be explored)
Time Resolution (ns)	Must be within 25 ns window
Inactive area	< 5%
Power Consumption (W/cm^2)	0.15
Data transmission (Gbps)	4 links of 1.28 Gb/s each, multiplexed to 2 and 1 links
NIEL (TBC)	3×10^{14} (6 $\times 10^{14}$ with safety factor)

Fred Blanc

A possible setup, very preliminary

Characteristics	LV-CMOS	HV-CMOS	
Chip size	$3.5 imes 3.5~{ m cm}^2$	$2.0 imes2.0~{ m cm}^2$	
Pixel size	$30 imes 30~\mu\mathrm{m}^2$	$50 imes150~\mu{ m m}^2$	
Chip thickness	$100 \; \mu \mathrm{m}$		
Position resolution	$510~\mu\mathrm{m}$	$15,~40~\mu\mathrm{m}$	
Time resolution	O	(1 ns)	
Power consumption	$100300 \mathrm{~mW/cm^2}$		
Data rate per chip	Up to 30 Gb/s	Up to 9 Gb/s	
Radiation dose	$3 imes 10^{15} \ \mathrm{n_{eq}/cm^2}$, and 240 Mrad TID	

- **Pixel size** •
 - Occupancy •
 - Space (\rightarrow momentum) resolution •
 - Tracking performances (ghost rate) ٠

Characteristics	LV-CMOS	HV-CMOS	
Chip size	$3.5 imes 3.5 ext{ cm}^2$	$2.0 imes2.0~{ m cm}^2$	
Pixel size	$30 imes 30~\mu\mathrm{m}^2$	$50 imes150~\mu\mathrm{m}^2$	
Chip thickness	$100~\mu{ m m}$		
Position resolution	$510~\mu\mathrm{m}$	15, 40 $\mu \mathrm{m}$	
Time resolution	O(1 ns)		
Power consumption	100300 mW/cm^2		
Data rate per chip	Up to 30 Gb/s	Up to 9 Gb/s	
Radiation dose	$3 imes 10^{15} \ \mathrm{n_{eq}/cm^2}$, and 240 Mrad TID	

- Pixel size
 - Occupancy
 - Space (\rightarrow momentum) resolution
 - Tracking performances (ghost rate)
- Chip size, detector position, number of planes
 - Dead areas (keep below 1%) \rightarrow efficiency
 - Tracking performances
 - Data rate (also depending on the readout scheme)

Characteristics	LV-CMOS	HV-CMOS	
Chip size	$3.5 imes 3.5~{ m cm}^2$	$2.0 imes2.0~{ m cm}^2$	
Pixel size	$30 imes 30~\mu\mathrm{m}^2$	$50 imes150~\mu\mathrm{m}^2$	
Chip thickness	$100~\mu{ m m}$		
Position resolution	$510~\mu\mathrm{m}$	$15,40\;\mu\mathrm{m}$	
Time resolution	O(1 ns)		
Power consumption	$100{-}300~\mathrm{mW/cm^2}$		
Data rate per chip	Up to 30 Gb/s	Up to 9 Gb/s	
Radiation dose	$3 imes 10^{15} \ \mathrm{n_{eq}/cm^2}$	² , and 240 Mrad TID	

- Pixel size
 - Occupancy
 - Space (\rightarrow momentum) resolution
 - Tracking performances (ghost rate)
- Chip size, detector position, number of planes
 - Dead areas (keep below $1\%) \rightarrow \text{efficiency}$
 - Tracking performances
 - Data rate (also depending on the readout scheme)

- Chip thickness and global material budget
 - Space (\rightarrow momentum) resolution, multiple scattering
 - High impact on flex PCB conductor choice (Cu vs Al) and cooling solution (water can carbon composite)
 - Do we need to keep X/X_0 below 1% ? What is the maximum X/X_0 we can accept?

Characteristics	LV-CMOS	HV-CMOS	
Chip size	$3.5 imes 3.5~{ m cm}^2$	$2.0 imes2.0~{ m cm}^2$	
Pixel size	$30 imes 30~\mu{ m m}^2$	$50 imes150~\mu\mathrm{m}^2$	
Chip thickness	$100~\mu{ m m}$		
Position resolution	$510~\mu\mathrm{m}$	$15,40\;\mu\mathrm{m}$	
Time resolution	O(1 ns)		
Power consumption	$100{-}300~\mathrm{mW/cm^2}$		
Data rate per chip	Up to 30 Gb/s	Up to 9 Gb/s	
Radiation dose	$3 imes 10^{15} \ \mathrm{n_{eq}/cm^2}$	² , and 240 Mrad TID	

- Pixel size
 - Occupancy
 - Space (\rightarrow momentum) resolution
 - Tracking performances (ghost rate)
- Chip size, detector position, number of planes
 - Dead areas (keep below $1\%) \rightarrow \text{efficiency}$
 - Tracking performances
 - Data rate (also depending on the readout scheme)

- Chip thickness and global material budget
 - Space (→ momentum) resolution, multiple scattering
 - High impact on flex PCB conductor choice (Cu vs Al) and cooling solution (water can carbon composite)
 - Do we need to keep X/X_0 below 1% ? What is the maximum X/X_0 we can accept?
- Time resolution (the most challenging development...)
 - BX tagging (ns resolution) seems reasonably achievable
 - We need a detailed assessment of tracking performances to justify the need of a sub-ns resolution

Characteristics	LV-CMOS	HV-CMOS	
Chip size	$3.5 imes 3.5~{ m cm}^2$	$2.0 imes2.0~{ m cm}^2$	
Pixel size	$30 imes 30~\mu{ m m}^2$	$50 imes150~\mu\mathrm{m}^2$	
Chip thickness	$100~\mu{ m m}$		
Position resolution	$510~\mu\mathrm{m}$	$15,40\;\mu\mathrm{m}$	
Time resolution	O(1 ns)		
Power consumption	$100300~\mathrm{mW/cm^2}$		
Data rate per chip	Up to 30 Gb/s	Up to 9 Gb/s	
Radiation dose	$3 imes 10^{15} \ \mathrm{n_{eq}/cm^2}$	² , and 240 Mrad TID	

- Pixel size
 - Occupancy
 - Space (\rightarrow momentum) resolution
 - Tracking performances (ghost rate)
- Chip size, detector position, number of planes
 - Dead areas (keep below $1\%) \rightarrow \text{efficiency}$
 - Tracking performances
 - Data rate (also depending on the readout scheme)

- Chip thickness and global material budget
 - Space (→ momentum) resolution, multiple scattering
 - High impact on flex PCB conductor choice (Cu vs Al) and cooling solution (water can carbon composite)
 - Do we need to keep X/X_0 below 1% ? What is the maximum X/X_0 we can accept?
- Time resolution (the most challenging development...)
 - BX tagging (ns resolution) seems reasonably achievable
 - We need a detailed assessment of tracking performances to justify the need of a sub-ns resolution
- Power consumption
 - Demanding performances (fast readout, time resolution) comes with high power consumption
 - Baseline is to stay below 500 mW/cm² in order to be compatible with water cooling

Characteristics	LV-CMOS	HV-CMOS	
Chip size	$3.5 imes 3.5~{ m cm}^2$	$2.0 imes2.0~{ m cm}^2$	
Pixel size	$30 imes 30~\mu{ m m}^2$	$50 imes150~\mu\mathrm{m}^2$	
Chip thickness	$100~\mu{ m m}$		
Position resolution	$510~\mu\mathrm{m}$	$15,40\;\mu\mathrm{m}$	
Time resolution	O(1 ns)		
Power consumption	$100300~\mathrm{mW/cm^2}$		
Data rate per chip	Up to 30 Gb/s	Up to 9 Gb/s	
Radiation dose	$3 imes 10^{15} \ \mathrm{n_{eq}/cm^2}$	² , and 240 Mrad TID	

- Pixel size
 - Occupancy
 - Space (\rightarrow momentum) resolution
 - Tracking performances (ghost rate)
- Chip size, detector position, number of planes
 - Dead areas (keep below 1%) \rightarrow efficiency
 - Tracking performances
 - Data rate (also depending on the readout scheme)

Chip thickness and global material budget

- Space (\rightarrow momentum) resolution, multiple scattering
- High impact on flex PCB conductor choice (Cu vs Al) and cooling solution (water can carbon composite)
- Do we need to keep X/X_0 below 1% ? What is the maximum X/X_0 we can accept?
- Time resolution (the most challenging development...)
 - BX tagging (ns resolution) seems reasonably achievable
 - We need a detailed assessment of tracking performances to justify the need of a sub-ns resolution
- Power consumption
 - Demanding performances (fast readout, time resolution) comes with high power consumption
 - Baseline is to stay below 500 mW/cm² in order to be compatible with water cooling
- Radiation hardness
 - Detailed calculation is needed: present value is only a "rule of thumb" estimation

- Effect on the active sensor:
 - Mostly due to charge carriers generated by ionization in the dielectric layer of the process, in particular oxide structures (gates, shallow trench insulators, spacers,...)
 - Charge trapping induces threshold shift
 - Need high depletion and drift field to collect the signal charge fast enough (before it gets trapped)
 - Need thin layers to contain power consumption from leakage currents (and appropriate reset circuit)
 - Modulated by bias and temperature: increase bias/temperature leads to damage increase (but not for annealing after irradiation)
- Total ionizing dose
 - Intrinsic transistor has become more and more radiation tolerant due to thinner gate oxide
 - Integrate enclosed transistors and guard rings to avoid leakage currents
- Single event effects
 - Single Event Upset (SEU): triple redundancy with majority voting (can be an issue also in the frontend FPGAs)
 - Latch-up: not observed at LHC (only in STAR)

Conclusions

- HL-LHC conditions require a major upgrade of all LHCb trackers
- Very important effort in prospecting solutions which use innovative techniques
- Preliminary studies (physics cases, tracking performances, technological solutions) have been made and integrated within the Framework-TDR but...
- Convergence between UT and MT on a technological choice would be highly beneficial (and is strongly suggested by the LHCC)
 - The time scale of the MT project is an additional constraint
- Simulations and performance studies are still needed to drive the technological choices (both for UT and MT)
- The R&D program started and is gaining momentum
- We have 3-4 years to complete this R&D and reach a readiness state compatible with a TDR