The Beam-Based Aligment of the TOTEM and ALFA Roman Pots

M. Deile, PH-TOT

on behalf of

TOTEM, ATLAS/ALFA and several LHC teams

Global Strategy

In total: 32 pots to be aligned (2 x 12 TOTEM, 8 ALFA)

- \rightarrow distribute the task in 2 separate exercises:
- 1. 12 x TOTEM 220 m + 8 x ALFA

- after the technical stop (13/14/15 May)

2. 12 x TOTEM 147 m

- to be scheduled (at least 1 week later)

Each alignment exercise is followed by

- Data taking at very small RP distances from the beam (major part of TOTEM physics programme!)
- Loss map at nominal physics settings (Vertical: 14 σ , Horizontal: 17 σ) \rightarrow qualify the pots for operation in normal runs with STABLE_BEAMS

Method:

Like collimator setup: cut an edge into the beam with the TCPs, then approach each pot to the beam until BLM detects a loss spike \rightarrow edge found

Preparation:

Increase monitor factors for the nearest BLMs downstream of RPs: Discussed with BI, MPP representatives [see Barbara's presentation]

Desired beam conditions:

- $E = 3.5 \text{ TeV}, \beta^* = 1.5 \text{ m}, \text{ collisions}, \text{ beam mode} = \text{ADJUST}$
- Bunching:

1 bunch of $(8 - 10) \ge 10^{10}$ p [preference for the lower end of the range], $\varepsilon_n = 3 \div 3.5 \ \mu m$ rad

9 pilots of 1 x 10¹⁰ p , $\varepsilon_n = 1 \div 1.5 \ \mu m$ rad:

6 colliding in IP1 and 5 3 colliding in IP2 / IP8

Emittance measurements [F. Roncarolo is notified] :

- BSRTs
- Wire scans before the alignment and after data taking

Simplified Sequence

- TCPs to $5 \div 5.5 \sigma \rightarrow$ cut edge, find centre
- put all TOTEM RPs to a safe distance out of garage (V: 20 σ , H: 40 σ) to enable last trigger latency check
- start alignment with ALFA RPs and horizontal TOTEM RPs (one team on beam 1, the other on beam 2, never two pots on the same beam)
- after each RP pair, refine the beam edge with TCP \rightarrow beam gets thinner with each pot
- continue with vertical TOTEM RPs (by now the beam might already be cut down to 4σ)
- prepare data taking: vertical TCP $\leq 4 \sigma$ vertical RP = TCP + 1 $\sigma \leq 5 \sigma$

horizontal TCP = 4 σ TCSG = TCP + 1 σ = 5 σ (for protection against asynchronous beam dumps) horizontal RP = TCP + 2 σ = 6 σ

- data taking
- all collimators and pots to nominal settings (V: 14 σ , H: 17 σ)
- loss map

Total programme: ~ 13 to 15 hours [For more details see excel sheet (also on indico)]

Backup

Calculation of the Nominal Settings

Agreement for normal runs in Stable Beams: Vertical pots: 14 σ Horizontal pots: 17 σ

How to define these settings?

Calculation of the Nominal Settings

Alignment exercise:

Method 1: via calculated beam centre

- Both methods use σ at the RP as input from the optics
- Method 1 assumes that T and B have a common scale zero point,
 i.e. they are calibrated w.r.t. the same reference point
 → sensitive to survey errors
- Method 2 suffers from errors due to betatron beating

 $T_{14\sigma} = T_{4\sigma} + 10\sigma$

 $B_{14\sigma} = B_{4\sigma} - 10\sigma$

Calculation of the Nominal Settings

Potential problem of method 1:

If survey is perfect $(0_T = 0_B)$, method 1 = method 2

