

Update on UFOs

Tobias Bär *MPP* May, 13th 2011

Acknowledgements: E. B. Holzer, S. Jackson, M. Misiowiec, E. Nebot, A. Nordt, J. Wenninger, C. Zamantzas

Machine Protection Panel

1. UFO Detection and Data Processing

2. Observations

3. Outlook and Summary

1. UFO Detection and Data Processing

2. Observations

3. Outlook and Summary

• UFO Buster detects UFOs online in 1Hz concentrator data.

Losses (RS 4) of **two BLMs in 40m** are above **1E-4 Gy/s**. RS 2 / RS 1 > 0.55 (UFO average : 0.89). RS 3 / RS 2 > 0.45 (UFO average: 0.79).

- **Over 4000 triggers** by the UFO Buster so far.
 - From subset of 230 manually verified triggers: *About 70% are UFOs, 10% ambiguous cases, 20% are false triggers.*
 - For most analysis additional cut. E.g.:

Only flat top UFOs, loss of UFO BLM (RS05) > $5 \cdot 10^{-4}$ Gy/s ($\approx 5 \%$ of threshold).

53 events remain of subset, of which 51 are clear UFOs (96%) and 2 are ambiguous cases.

Content

ESS SVAC/ P

1. UFO Detection and Data Processing

2. Observations

3. Outlook and Summary

UFOs Below Threshold

Service 223

Most UFOs are much below threshold.

Spatial UFO Distribution

ESS 504079

The UFOs are distributed all around the machine.

Mainly UFOs at MKIs

38 candidate UFOs at MKI for Beam 2.

UFO rate

SVIA C

UFOs at MKIs

Since 08.04.2011 in total 460 fast loss events around MKIs.
 (104 around MKI in IP2, 336 around MKI in IP8).

Distribution of first BLM which sees the loss:

Example: UFOs at MKI R8

(Jan Z)

UFO at 2352 GeV, 228 bunches. Loss starts at BLMEI.05R8.B2E10_MKI.C5R8.B2.

UFO at 1424 GeV, 768 bunches. Loss starts at BLMQI.04R8.B1I30_MQY.

Energy Distribution of MKI UFOs

255 SV202/

Many events at 450 GeV.

MKI UFOs During Scrubbing

255 SV40/

• Typical scenario for MKI UFOs during scrubbing: Loss spikes occur in first few minutes after an injection and go away then.

Dump on 01.05.2011

SVAL.Z

Dump of BLMQI.04L2.B1E20_MQY on RS 3, 4 and 5

Dump on 01.05.2011

 From fit of PM data (BLMEI.05L2.B1E10_MKI.D5L2.B1): Amplitude: 0.63 Gy/s Width: 0.29 ms

Dump by ALICE on 14.04.2011

ESS SVAC/P

Could be a UFino

Dump by ALICE on 14.04.2011

 From fit of PM data (BLMEI.01L2.B1I10_MBWMD): Amplitude: 6.3.10⁻⁴ Gy/s Width: 0.16 ms

Content

ESS SVAN/ P

1. UFO Detection and Data Processing

2. Observations

3. Outlook and Summary

Trigger acquisition of turn-by-turn data.

UFO Buster kernel integrated in BLM Concentrator. Successful test during technical stop.

Better localization of MKI UFOs
 Simulations (Yngve – BDSIM)
 Additional BLMs

- About 3000 candidate UFOs in 2011 so far.
 2 UFOs were dumping the beam.
 Most events at 3.5 TeV.
- UFO rate in last weeks constant. 10 UFOs/hour at 3.5 TeV.
- Many UFOs at MKIs.
- Next step: improve the diagnostics *UFO Buffer with 80µs BLM data. Additional BLMs at MKIs.*

Thank you for your Attention

Further information:

- E.B. Holzer, "Losses away from collimators: statistics and extrapolation", LHC Beam Operation Workshop, Evian, December 2010.
- T. Baer, "LHC Machine Protection and UFOs", DPG Spring Meeting, Karlsruhe, March 2011.
- J. Wenninger, "Analysis attempt of dump UFOs", LHC Machine Protection Panel, Geneva, March 2011.

Tobias Baer

CERN BE/OP Tobias.Baer@cern.ch Office: +41 22 76 75379

Backup slides

- UFO Buster detects UFOs online in 1Hz concentrator data.
 - 1. Losses (RS 4) of at least **two BLMs within 40m** are above *1E-4 Gy/s*.
 - 2. A BLM is not taken into account if It is a BLMES, BLMCC, BLMDS, BLMDI. It is at a TCT or TDI. It is in IP3, IP6, IP7 or IP8 (between TCTs). RS 2 / RS 1 < 0.55 (UFO average: 0.89). RS 3 / RS 2 < 0.45 (UFO average: 0.79).</p>
 - 3. The acquisition is skipped for a few seconds after injection warning and beam wire scan timing event.

UFOs in 2010

- 18 beam dumps due to UFOs. (since 07.07.2010)
- 113 UFOs below threshold found in logging database. (E. Nebot) (03.08.2010 - 28.10.2010)
- UFO rate proportional to intensity.
- No dependency of peak signal on intensity. (cf. E.B. Holzer at Evian Dec. 2010)
- Loss duration has tendency to become faster with higher intensity. (cf. E.B. Holzer at Evian Dec. 2010)

Fast Loss Event Rate

ESS SVA0/9

• After the increase of the BLM Threshold by a factor of 3 there were about **4.1 times less beam dumps** due to fast loss events.

Peak Signal and Loss Duration

 Average UFO signal: no clear dependence on intensity

• Loss duration: tendency to decrease with intensity

courtesy of E. B. Holzer and E. Nebot

- Two extreme cases:
 - UFO much larger than beam: the beam is imaging the UFO.
 - UFO much smaller than beam: the UFO is imaging the beam.

Most UFO shapes are Gaussian, thus most UFOs are expected to be smaller than the beam.

• From FLUKA simulations: size $\approx 1 \ \mu m$.

(cf. M. Sapinski, F. Zimmermann at Chamonix 2011)

courtesy of J. Wenninger (cf. MPP 25.03.2011)

May, 13th 2011

Machine Protection Panel

UFO Speed

• UFO speed: $v_U = \frac{\sqrt{\sigma_b^2 + \sigma_U^2}}{\sigma_T} > \frac{\sigma_b}{\sigma_T}$

 v_u : UFO speed, σ_b : transverse beam size, σ_u : UFO size, σ_T : temporal width of loss.

• From free fall:

$$\boldsymbol{v}_U = \sqrt{2 \cdot \boldsymbol{g} \cdot \boldsymbol{h}} = 0.63 \frac{m}{s}$$

The UFO speed corresponds to the expected speed for a free fall from the aperture.

Example: Loss at MKI for B1

A CANVAR

- Loss starts at BLMEI.05L2.B1E20 MKI.C5L2.B1
- BLMQI.04L2.B1E20_MQY at • 98% of dump threshold (RS5)

Scale: Log 💌

Sector

🖌 1 - 2 🖌 5 - 6

2-3 6-7

🖌 3 - 4 🖌 7 - 8

¥4-5 ¥8-1

Sector 4-5

Display Optics Ele

Integration Time

🖌 External

🖌 Internal

🖌 Тор

✓ Bottom

Beam

🖌 Beam 1

🖌 Beam 2

At 3.5 TeV stable beams. ٠

Section

🖌 LSS

🖌 DS

ARC ARC

Unit: Gray / s 💌

Sectors Filter Octant Filter Dump Filter List Filter Regex Filter

Type

✓ IC

🗌 LIC

SEM

Total Losses: 0.4919 [Gray / s] Sector 1-2

EE • 1

🖌 Quad

✓ Other

2 Element

✓ Mohile

1E1 :

1E0 :

1E-

- 1E-2

8 1E-3

1E--1E-3

1E-6

Filter (3549 / 3891) -Location

🖌 Use DCUM

Lossratio for MKI UFOs B1

ESS SWADIG

C. P. S.S.

Lossratio for MKI UFOs B2

255 3 MAQ/2

6. 19-5.51

Dynamics of Dust Particles

From **simulations**:

 Dust particle will be positively ionized and be repelled from the beam.

> Beam intensity: $2.3 \cdot 10^{12}$ protons, Al object.

 Loss duration of a few ms.
 Losses become shorter for larger beam intensities.

courtesy of F. Zimmermann

- Distributed ion pumps (PF-AR, HERA).
- Electrical Discharges (PF-AR).
- Movable Devices.
- Particles frozen or condensated at cold elements. (ANKA)