ADT- Update on most critical failures and interlocking ideas

Part 1: Overview

10th June 2011

W. Hofle

D. Valuch → part 2: 24.06.2011

Reminder and aim

- ADT can excite beam oscillations very rapidly when things go wrong
- has been looked at by MPP review in 2005 <u>http://indico.cern.ch/getFile.py/access?contribId=8&sessionId=2&resId=</u> <u>&materialId=slides&confId=a055</u>
 - aim here: re-visit ADT as implemented and operated
 - list of critical failures related to ADT
 - mitigation measures in place
 - □ future options for further measures and interlocking
 - status of abort gap cleaning (Daniel)
 - diagnostics and post mortem (Daniel)
 - plans for settings protection (Daniel)

Maximum achievable performance

LHCADT performance in LHC optics version 6.5xxx compared to original assumptions (at 450 GeV/c), assuming 7.5 kV maximum kick voltage (parameters slightly changed with respect to 2005 MPP review)

	β=100 performance	Optics 6.4 performance
	Kick per turn in σ	Kick per turn in $\sigma @ \beta$ in m
ADTH beam 1	0.2 σ	0.277 σ at β =193 m
ADTH beam 2	0.2 σ	0.273σ at β =187 m
ADTV beam 1	0.2 σ	0.309 σ at β =239 m
ADTV beam 2	0.2 σ	0.316σ at $\beta = 250 m$

MPP relevant cases that happened

commissioning work: lost beam while setting-up: normal, protected by BLMs / position interlock, pilot or safe beam (2009-2011)

test of kick strength, voluntarily kicked to excite oscillations programmed to stop after n turns (2009)

excessive noise: slow losses → bad lifetime (2009) also on BI input

damper not on, lost beam \rightarrow human error (2010, 2011) BLMs protected, now driven by sequencer

loss of one damper module (half kick strength), survived (2011)

wrong gain, error running sequences \rightarrow wrong damping time, survived (2011)

wrong settings, configuration due to software/reboot \rightarrow lost beam (2011)

Lost crate CPU or process \rightarrow FPGA continues, beam not lost, but control and logging affected (2011)

Damper failures and protection (1)

- in case of a damper failure there is no danger for the damper system itself
- ➤ damper failure with loss of kick strength: example: loss of one damper module due to high voltage power supply trip or due to overload → survived, but shall we inhibit injection in this case ?
- test signal / checks with pilot, not done, is it worth ?
- ➤ loss of revolution frequency or clock frequency for digital processing: will lead to malfunctioning of the system, if detected, system can shut itself down to avoid unwanted action on beam; abort gap cleaning must be stopped in this case → check for AGC position complicated by new injection cleaning; signal processing by 40 MHz, 80 MHz clocks, needs work to detect failures, foreseen, details to be worked out, never happened yet → see some details in Daniel's talk
- there is no check foreseen to protect against unwanted signals injected on the excitation input. This input is provided for AB-BDI protection by attenuator in place limiting BI capabilities to 10% of nominal kick strength

Damper failures and protection (2) worst case scenarios

- ➤ abort gap cleaning not aligned with abort gap due to bad revolution frequency phase → protection maybe possible, but not in place
- ➤ large amplitude signal injected on external input provided to BDI group → protection in place (attenuator)
- badly injected beam outside capabilities of damper: system will saturate not so good damping but not catastrophic, make a test ? note that collimation in transfer line at 5 σ will not help here as damper system will saturate earlier
- partial or complete loss of clock frequency will lead to erratic kicks
 protection can be put in place, will not cover all cases easily, to be studied
- ➤ bad settings or (tune, damper phase setting, delay setting) can lead to anti-damping → effort needed for settings management, in work

Damper failures and protection (3) Worst case protection

- Must rely on position interlock by external system to detect oscillating beam – only this can guarantee protection against "catastrophic" damper failures
- BLM system must react fast to provide protection
- Inside the damper system a few checks can be provided to prevent continuation of the mission when there is a risk that this will lead to unusable physics beam
- a procedure needs to be established to decide whether to take into account the damper interlocks for a particular mission. The beam safe-flag is a good concept, but my feeling is that the complexity calls for more than two levels

Conclusions

- Transverse damper system must be very powerful for efficient injection damping and to minimize emittance blow-up
- A high degree of flexibility is demanded from the damper systems: use as beam exciters, abort gap cleaning etc.
- > Worst case scenario (1 σ amplitude excitation reached in 4 turns ...) cannot be excluded
- External protection by BLM system and position interlock required
- Procedures must be established in order to define which of the possible damper interlocks should be taken into account for a particular mission to improve operational efficiency