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Introduction

Beam wire scan: Quench test

Recall of experimental scenario
® Beam Wire Scanner (BWS.5L4.B2)

e Wire made of Carbon, with a diameter dy of 30um
e Position: left of IR4, ~32 m upstream of MBRB.5L4 (D4)

® Quench test conducted by BLM team (01/11/2010)
e Horizontal scans at various speeds (1 m/sec to 5 cm/sec)
e Dipole (MBRB) quenched during last scan
e For details, see presentation given at MPP, 12/11/2010
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Simulation benchmark

® Experiment provided suitable conditions to validate FLUKA predictions of
shower development in the LHC energy regime

® Monte Carlo compared against measured Beam Loss Monitor (BLM)
response along the most impacted magnet string

First results were presented at MPP, 21/01/2011




Introduction

Simulation update

Geometry more accurately rendered

e |Improvements particularly concerned cryostat, interconnect
LMBRB/LMQYH, warm vacuum modules up-/downstream of
LMBRB/LMQYH, as well as BLM positioning

e Additional details resulted in enhanced shielding effects or shower
build-up — significant changes in BLM signals were observed in some

cases

~18m  ~33mto
wire scanner

Re-evaluation of results in view of normalization




Geometry details upstream of LMBRB
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Geometry details around interconnect

Interconnect
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Geometry details downstream of LMQYH
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Geometry details downstream of LMQYH

Impact on signal in BL

end cap) partially shield radiation field
— Dose decrease of ~40%

Geometry

nominal value in layout database

strong radial field gradient (see plot)

® Additional components (in particular warm vacuum modules and cold mass

® Actual distance between BLM and beam pipe significantly smaller than

— Accounting for actual position yields dose increase of ~30% due to
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Static wire and initial proton distribution

® Basics assumption: Static wire position at nominal beam center

® Only protons simulated which impinge on the wire (flat distribution to cover
wire laterally)

® Plot (by Mariusz) shows measured BLM signals for scans performed in case
of different orbital bumps (difference from shot to shot was 0.5 mm):
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® Bump has (almost) no effect on the shape of the loss as seen by BLMs
— Confirms the validity of our assumption of a static wire position




Normalization

Normalization factor

Recall

Simulation delivers results per proton impinging on the wire
— Normalization required to account for the total number of protons Ny
traversing the wire throughout a scan

Model solution

Supposing the wire moves with constant velocity vy, one obtains following
expression:

frac
vy

Nyw = NpNp dw, (1)

where N, refers to the number of bunches, N; indicates the number of protons
per bunch, f1 ¢ is the LHC revolution frequency, and dyy is the wire thickness.

Assuming Ny = 131, N, = 1.15 x 10!, fr o = 11245 Hz and dy = 0.003 cm,
Equation (1) yields N,, = 5.082 x 10'* /v, (with vy, in cm/s).




Normalization

Normalization factor

® Model solution implies that the product Ny - vy (and hence Dpras - vw)
is constant for scans performed at different speeds

® Expected behaviour is largely confirmed by measurements, except for vy =
5 cm/s, where wire oscillation, wire sublimation, etc. occurred (see
presentation at MPP, 01/2011):
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® For the purpose of the benchmark, we compare against the average
measured value over all scans with vy >5 cm/s




Time-integrated dose in BLMs

Experiment vs FLUKA (v =25 cm/sec):
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Agreement of absolute dose within +30%




Peak power density in coils of D4 and Q5

Time-integrated (/40 msec) peak energy density for a scan at 5 cm/sec:
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To account for experimental conditions at 5 cm/sec (e.g. wire oscillations etc.)
an empirical factor was applied on top of the described normalization:
N‘s/vcm/sec = Ny - 1.27 (this factor derives from a comparison of experimental

dose values obtained at different speeds)




Summary and conclusions

Shower development descriptions by FLUKA and accompanying energy
deposition/particle fluence predictions are used in many LHC-related studies
(e.g, collimation, ...)

® By comparing simulated and measured BLM response, the presented work
examined the reliability of FLUKA for predicting beam-machine interaction
effects in the LHC energy regime

Summary and
conclusions

® Geometry details in the vicinity of BLMs proved to be particularly important
in cases where BLMs were located after an interconnect or in the proximity
of the beam pipe

® Measured dose values could be well reproduced — with discrepancies
amounting to less than 30% in all individual cases

® The experimental setup allowed for a benchmark under controlled
conditions, with accurate knowledge of the source term

® |n other experimental scenarios, larger uncertainties may occur if the

information available (e.g. loss distribution) is limited




Outlook

Outlook

Upcoming benchmark

® Stable beams: FLUKA vs dose measured in BLMs around triplet right of IR1

® Preliminary comparison of time-integrated dose for Fill #1450:
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® Relative pattern well reproduced, some discrepancies can be ascribed to
missing geometry details (lessons learned from wire scanner simulations)

® Systematic offset to be understood, possible source of differences could be
normalization (luminosity, total cross section), ...
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