Introductio

Geometi

Source

Normalizatio

Results

Summary an conclusions

Outlook

# Quench test with LHC wire scanner: Update on FLUKA simulations

A. Lechner, F. Cerutti, A. Ferrari (on behalf of the FLUKA team), and M. Sapinski

Valuable input by T. Baer, A. Nordt and A Verweij

June 10, 2011

## Beam wire scan: Quench test

#### Recall of experimental scenario

#### • Beam Wire Scanner (BWS.5L4.B2)

- Wire made of **Carbon**, with a diameter  $d_W$  of  $30\mu m$
- Position: left of IR4, ≈32 m upstream of MBRB.5L4 (D4)
- Quench test conducted by BLM team (01/11/2010)
  - Horizontal scans at various speeds (1 m/sec to 5 cm/sec)
  - Dipole (MBRB) quenched during last scan
  - For details, see presentation given at MPP, 12/11/2010

#### Simulation benchmark

- Experiment provided suitable conditions to validate FLUKA predictions of shower development in the LHC energy regime
- Monte Carlo compared against measured Beam Loss Monitor (BLM) response along the most impacted magnet string
- First results were presented at MPP, 21/01/2011

#### Introduction

Geometry

Source

Normalizatior

Results

Summary and conclusions

# Simulation update

#### Introduction

- Geometry
- Source
- Normalization
- Results
- Summary and conclusions
- Outlook

#### Geometry more accurately rendered

- Improvements particularly concerned cryostat, interconnect LMBRB/LMQYH, warm vacuum modules up-/downstream of LMBRB/LMQYH, as well as BLM positioning
- Additional details resulted in enhanced shielding effects or shower build-up  $\rightarrow$  significant changes in BLM signals were observed in some cases



• Re-evaluation of results in view of normalization

# Geometry details upstream of LMBRB

Introduction Geometry Source Normalization Results

Summary and conclusions



### Geometry details around interconnect



# Geometry details downstream of LMQYH

ntroduction

Geometry

Source

Normalizatio

Results

Summary and conclusions



# Geometry details downstream of LMQYH

#### Impact on signal in BLM #8

- Additional components (in particular warm vacuum modules and cold mass end cap) partially shield radiation field
  - $\longrightarrow$  Dose decrease of  $\approx$ 40%
  - Actual distance between BLM and beam pipe significantly smaller than nominal value in layout database
    - $\longrightarrow$  Accounting for actual position yields dose increase of  ${\approx}30\%$  due to strong radial field gradient (see plot)



Geometry

Source

Normalizatio

Results

Summary and conclusions

# Static wire and initial proton distribution

- Basics assumption: Static wire position at nominal beam center
- Only protons simulated which impinge on the wire (flat distribution to cover wire laterally)
- Plot (by Mariusz) shows measured BLM signals for scans performed in case of different orbital bumps (difference from shot to shot was 0.5 mm):



• Bump has (almost) no effect on the shape of the loss as seen by BLMs  $\rightarrow$  Confirms the validity of our assumption of a static wire position

1

- ntroduction
- Geometry
- Source
- Normalization
- Results
- Summary an conclusions
- Outlook

### Normalization factor

#### Recall

Simulation delivers results per proton impinging on the wire  $\rightarrow$  Normalization required to account for the total number of protons  $N_W$  traversing the wire throughout a scan

#### Model solution

Supposing the wire moves with constant velocity  $\boldsymbol{v}_W,$  one obtains following expression:

$$N_W = N_b N_p \frac{f_{LHC}}{v_W} d_W, \tag{1}$$

イロト 不同ト 不同ト 不同ト

where  $N_b$  refers to the number of bunches,  $N_p$  indicates the number of protons per bunch,  $f_{LHC}$  is the LHC revolution frequency, and  $d_W$  is the wire thickness.

Assuming  $N_b = 131$ ,  $N_p = 1.15 \times 10^{11}$ ,  $f_{LHC} = 11245$  Hz and  $d_W = 0.003$  cm, Equation (1) yields  $N_w = 5.082 \times 10^{14}/v_w$  (with  $v_w$  in cm/s).

#### itroductio

Geometry

Source

#### Normalization

Results

Summary and conclusions

# Normalization factor

- Model solution implies that the product  $N_W \cdot v_W$  (and hence  $D_{BLM} \cdot v_W$ ) is constant for scans performed at different speeds
  - Expected behaviour is largely confirmed by measurements, except for  $v_W = 5$  cm/s, where wire oscillation, wire sublimation, etc. occurred (see presentation at MPP, 01/2011):



• For the purpose of the benchmark, we compare against the average measured value over all scans with  $v_W>\!\!5~{\rm cm/s}$ 

#### ntroduction

- Geomer
- Source

#### Normalization

- Results
- Summary an conclusions
- Outlook

### Time-integrated dose in BLMs



ㅋ ㅋ

Agreement of absolute dose within  $\pm 30\%$ 

Results

### Peak power density in coils of D4 and Q5



To account for experimental conditions at 5 cm/sec (e.g. wire oscillations etc.) an empirical factor was applied on top of the described normalization:  $N_W^{5\ cm/sec} = N_W \cdot 1.27$  (this factor derives from a comparison of experimental dose values obtained at different speeds)

# Summary and conclusions

- Introductior
- Geometi
- Source
- Normalization
- Results
- Summary and conclusions
- Outlook

- Shower development descriptions by FLUKA and accompanying energy deposition/particle fluence predictions are used in many LHC-related studies (e.g, collimation, ...)
- By comparing simulated and measured BLM response, the presented work examined the reliability of FLUKA for predicting beam-machine interaction effects in the LHC energy regime
- Geometry details in the vicinity of BLMs proved to be particularly important in cases where BLMs were located after an interconnect or in the proximity of the beam pipe
- Measured dose values could be well reproduced with discrepancies amounting to less than 30% in all individual cases
- The experimental setup allowed for a benchmark under controlled conditions, with accurate knowledge of the source term
  - In other experimental scenarios, larger uncertainties may occur if the information available (e.g. loss distribution) is limited

# Outlook

#### Upcoming benchmark

- Stable beams: FLUKA vs dose measured in BLMs around triplet right of IR1
- Preliminary comparison of time-integrated dose for Fill #1450:



- Relative pattern well reproduced, some discrepancies can be ascribed to missing geometry details (lessons learned from wire scanner simulations)
- Systematic offset to be understood, possible source of differences could be normalization (luminosity, total cross section), ...

- troduction
- Geometr
- Source
- Normalization
- Results
- Summary and conclusions