

## Abort gap & Injection gap cleaning

- Cleaning mode ADT excites the beam which then hits the collimators
- Excitation:
  - in a defined time window (abort gap, next injection slot)
  - by a synthesized signal (currently sinusoidal (various modulations available), noise is being studied)



Signals acquired during injection of the fill #1867

## **ADT performance**

• Excitation amplitude currently at 10% of the available kick strength (scales with the damper electronic gain)

LHC ADT performance in LHC optics version 6.5xxx compared to original assumptions (at 450 GeV/c), assuming 7.5 kV maximum kick voltage

|             | β=100 performance         | Optics 6.4 performance                 | New     | v Optics |
|-------------|---------------------------|----------------------------------------|---------|----------|
|             | Kick per turn in $\sigma$ | Kick per turn in $\sigma @ \beta$ in m | l       |          |
| ADTH beam 1 | 0.2 σ                     | 0.277 $\sigma$ at $\beta$ =193 m       | 0.317 s | 252 m    |
| ADTH beam 2 | 0.2 σ                     | $0.273 \sigma$ at $\beta$ =187 m       | 0.253 s | 160 m    |
| ADTV beam 1 | 0.2 σ                     | $0.309 \sigma$ at $\beta$ =239 m       | 0.285 s | 203 m    |
| ADTV beam 2 | 0.2 σ                     | $0.316 \sigma$ at $\beta$ =250 m       | 0.386 s | 305 m    |

#### **ADT performance**

#### Beam 2, Q9 vertical Abort Gap Cleaning tests 30. 4. 2010



slope: 0.0387 mm/turn @1/10 of strength (6 mm from turn 95 to 250)

## **Cleaning signal generation**

• Excitation within the turn



## **Cleaning signal generation**

• Window function



## Abort gap cleaning

#### Abort gap cleaning sequence

- Coherent excitation at  $Q_{VER} \pm 0.01$  in 15 steps (750 turns/step)
- Triggered by the 1000 ms timing
- Sequence stops automatically after 11240 turns



## Abort gap cleaning

- Operation
  - 1. Sequencer sets the cleaning parameters for flat bottom. Drive all non critical, check all critical.
  - 2. Inject pilot
  - 3. AGC activated by task enabling the timing before injecting first nominal
  - 4. Injecting physics beam. Cleaning sequence is retriggered by timing every second
  - 5. AGC deactivated in the sequence prepare for ramp by disabling the timing (+ setting key parameters to zero)

# **Injection gap cleaning**

#### • Injection gap cleaning sequence

- Cleaning bucket programmed on-the-fly by the injection sequencer
- Triggered by software (injection sequencer, could be protected by RBAC)
- Coherent excitation at Q<sub>HOR</sub> ± 0.01 in 15 steps (750 turns/step)
- One sub-sequence is 11240 turns long
- Sub-sequence repeats up to 20 times
- Cleaning sequence redundantly stopped by two timings and software



# **Injection gap cleaning**

- Operation
  - **1.** Sequencer sets/checks the cleaning parameters
  - 2. Inject pilot
  - 3. After inj. the **Injection sequencer checks the next injection bucket** and programs the next cleaning bucket
  - 4. Injection sequencer starts the cleaning as soon as the CBCM has accepted the injection request (typ. one SPS cycle)
  - 5. Cleaning sequence is running
  - 6. Cleaning is stopped 3 ms before the injection by Injection forewarning timing and redundantly 2 turns before injection by the BeamIn trigger
  - 7. Cleaning stopped by the Injection sequencer after injection (even empty inj.)
  - 8. Cleaning times out in hardware after 20 sequences (20 x 1s) had been played
  - 9. Go to step 2
  - 10. Sequencer disables cleaning by setting key parameters to zero at Prepare ramp

### **Cleaning sequence**

• Abort gap cleaning sequence



#### Injection gap cleaning (hor. plane)

Abort gap cleaning (ver. plane)



Signals acquired during injection of the fill #1867

#### **Current status**

- Sequencer drives the settings at injection
- All cleaning settings are static:
  - Set of regular LSA settings (frequency, exc. mode, amplitude etc.)
  - Critical settings (Gating, Gating offset, Gating delay, Clean mode)
- Some settings will be different for 3.5 TeV operation
  - Tune values
  - Excitation mode, amplitude, cleaning sequence
  - Window function (?)
- Critical settings are identical for injection and flat top
- Cleaning is not compatible with the tune measurement

## To do (for the next technical stop)

- Delphine already created different users for AGC
  - LHC.INJ\_ADT (settings for injection)
  - LHC.FT\_ADT (settings for flat top)
- The actual parameter settings are not user dependent
- The AGC control application needs to be updated
- The sequencer needs to be updated

# To do...

- Agreement on the cleaning strategy at flat top with 70+ MJ in the machine
  - When and how to start the cleaning
  - What type of excitation to use
  - Must avoid sudden high losses when we start to clean (beam dump)



## Summary

- Abort gap / Injection gap cleaning routinely used at injection
- No technical issues to run the cleaning at flat top
- A set of multiplexed settings was already created to program the parameters for injection/flat top
- Need to agree on cleaning strategy at flat top
- Input from the machine protection!

#### Abort gap & Injection gap cleaning





#### **Cleaning sequence**



### **ADT layout in the machine**



Bpos – Beam Position Module DSPU – Digital Signal Processing Unit