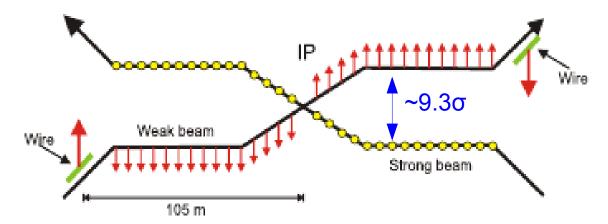


LHC Beam-Beam Compensator

Considerations to make it compatible with Machine Protection

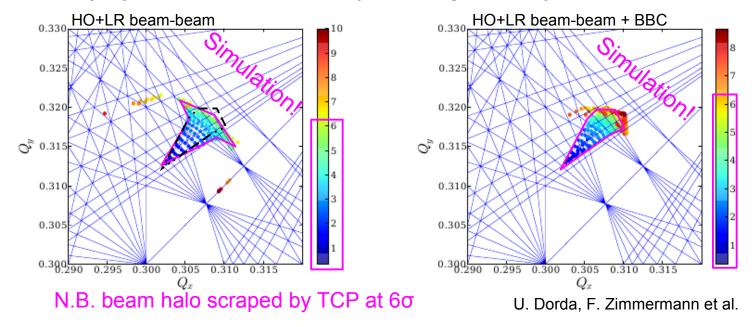
R.J. Steinhagen


for and with input from:

A. Bertarelli, A. Dallocchio, R. Jones, J.-P. Koutchouk, F. Bertinelli, D. Perini, T. Rijoff, R. Assmann, R. Veness, J. Wenninger, F. Zimmermann (ABP lead), M. Zerlauth

Motivation for Installing a BBC Prototype in the LHC I/II - Passed several Milestones

Initial proposal based on to J.-P. Koutchouk's note: CERN-SL-2001-048-BI



- Since, SPS wire-wire and RHIC beam-wire experiments demonstrated that: (for details → F. Zimmermann, e.g. Chamonix' 11 & http://http://cern-ab-bblr.web.cern.ch/)
 - 1. "detrimental wire effect on life-time can be compensated by another wire"
 - 2. Benchmark of numerical tool chain → indication of what to expect at LHC
 - What could be tested at the SPS and RHIC has been tested,
 - Still, no direct/consistent demonstration of beneficial effect on life-times
- Further tests require a true long-range beam-beam limited machine...

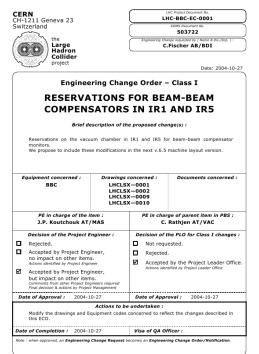
Motivation for Installing a BBC Prototype in the LHC II/II - Experimental Verification with Beam

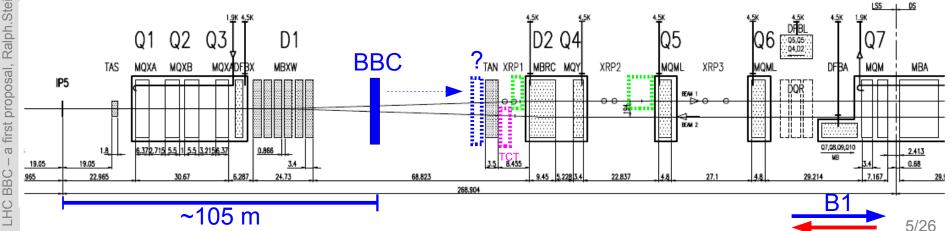
Next step in view of HL-LHC operation (Chamonix'11-Session8 and LMC#82) "Launch a project for the LRBB compensating wire in present LHC..."

- ... to put the prediction to the test using a prototype BBC.
- My task: coordinate/evaluate the impact of installing a prototype, possibly during the next long shut-down, to assess the BBC under realistic conditions
 - Tight constraints: design and production requires about a 1 year
 → would need a finalised design/specification by the end of this year
 - Preparation of targeted location for subsequent BBC installation:
 vacuum valves, pumps, girders, water, 600 A PC, BPM signal, cables, ...

Constraints for the proposed LHC BBC Prototype

- LHC-BBC scheme (→ ABP, F. Zimmermann et al.)
 - provide a adequate test-bed to experimentally assess its potential performance for present and future HL-LHC upgrade scenarios
- LHC Machine Protection (MPP → this meeting)
 - should not become an aperture bottleneck during regular operation
 - should either cope with asynchronous beam-dump scenario or not deteriorate machine performance after such an event
 - This will be a prototype tool for MD purposes
 → can assume special simplified run, optics and beam configurations:
 - e.g. limited number of bunches (e.g. <72), small emittances, etc.
- LHC Beam Cleaning (Collimation WG, R. Assmann et al.)
 - preserve/provide the same function as present collimator hierarchy
- Practical considerations, 'KISSS' Keep the Impact Simple, Small and Safe:
 - feasibility from an engineering point of view
 - Should not deteriorate present machine performance (e.g. impedance..)
 - required instrumentation to setup, assess and verify its performance




Initial Plans: LHC Beam-Beam Compensators I/III

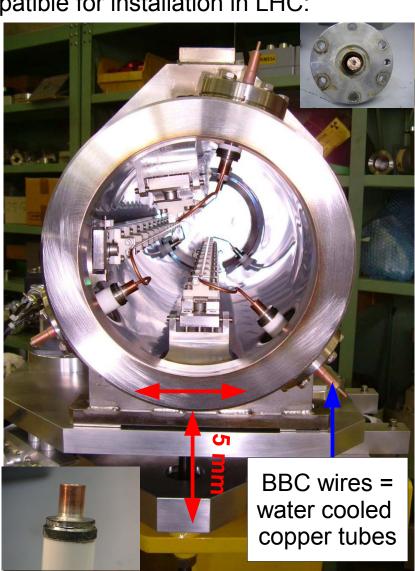
Reservations around IR1&IR5, LHC-BBC-EC-0001:

	name	Position and longitudinal dimensions		
IR1	BBC.4L1	-104.931 m ± 1.5m wrt IP1		
	BBC.4R1	104.931 m ± 1.5m wrt IP1		
IR5	BBC.4L5	-104.931 m ± 1.5m wrt IP5		
	BBC.4R5	104.931 m ± 1.5m wrt IP5		

- Min. LRBB → BBC phase advance: Δμ ≈ 2.6° (→ 3.1°)
- Symmetric beta-function: $β_{x/y} \approx 1000$ m (for β*= 0.55 m)
- N.B. single vacuum pipe for B1 & B2:
 110 mm full beam separation (only D1 only)
 (→ 165 mm, if shifted more towards TAN)

Physical Space IR5

- Reservation request is being honoured → common beam pipe still available
- Alternate location:



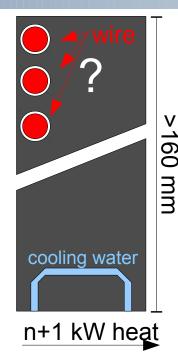
Initial Plans: LHC Beam-Beam Compensators II/III

- SPS and donated RHIC design are incompatible for installation in LHC:
- Diff. aperture, beam pipe, mechanics, ...
- Wire needs to be in between beams
- Free-standing wire & RF resonances

 ⇔ classic λ/n-antenna (impedance issues)
- Not robust w.r.t. beam impact
- Moveable tank bears the inherent risk of breaking and of bursting of:
 - vacuum bellows ↔require movement of > 10 mm
 - water cooled interconnects
 - bursting/water leaks inside the vacuum chamber ie. in response to impact of nominal bunch, n-flux fatigue or 1kW of inherent heat → A. Bertarelli's Chamonix'11 talk
- → inacceptable due to too big impact on LHC operation in case of failure.

Initial Plans: LHC Beam-Beam Compensators III/III

- Initially 2 BBC per beam/IP requested → H-V pair for one beam only, based on H-V crossing scheme, propose:
 - 1 x BBC-H.B1 in IR5, and
 - 1 x BBC-V.B1 in IR1
- Wire parameters:
 - Solid wire radius of ~ 1mm → 1kW power dissipation
 - Wire diameter is a trade-off between available aperture and cooling
 - sub-σ level of position control
 - Nominal scheme: $I = I_{peak} \cdot \sqrt{2\pi} \cdot \sigma_s \cdot n_{parasitic} = 72 \dots 350 \text{ Am (max.)}$
 - Pulsed wire to accommodate differences for PACMAN bunches
 - → not feasible/practical at this stage, stick to DC compensation only
- Wire-beam distance: average LR beam-beam separation of 9.7 σ
 - → implies a-priori similar nominal BBC position
 - closer than present and possibly future TCT settings
 - critical w.r.t. asynch. dump failure mode, in particular for B2 in IP5
 - → Not without issues, the motivation of revalidating this with MPP ...


Proposal to make BBC compatible with LHC Machine Protection

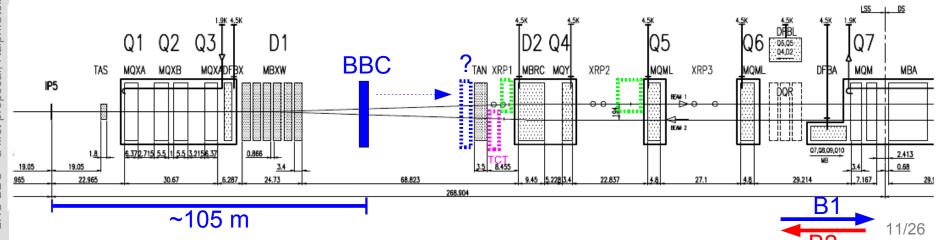
- The LHC BBC Prototype will need to be ...
 - A)... either operated always in the shadow of the TCTs¹ → Collimation WG
 - more relaxed in terms of mechanical design choices
 - some indication on trade-off possibilities → ongoing studies
 - B)... or provide a similar/combined function as the TCTs (wire-in-jaw design)
 - similar issues as for the TCT: setup, robustness issues related to material choices (Copper → Tungsten → Carbon?)
- Further, aim to reuse as much of established infra-structure as possible to aid/simplify controls integration into an operational LHC environment:
 - Collimator type girders, motor control and to embed the wire into jaws
 - standard e.g. LHC-type 600 A power converter (OK w.r.t. ripple requirement)
 - Integration of buttons as done for the TCT to aid the wire re-alignment
- In addition, the BBC prototype is targeted to be an MD tool → special run conditions, reduced intensity and time which should reduce the probability of e.g. asynchronuous dump failure impacting the wire
 - Failure rather impacts device rather than machine availability

Combined Wire-In-Jaw Design

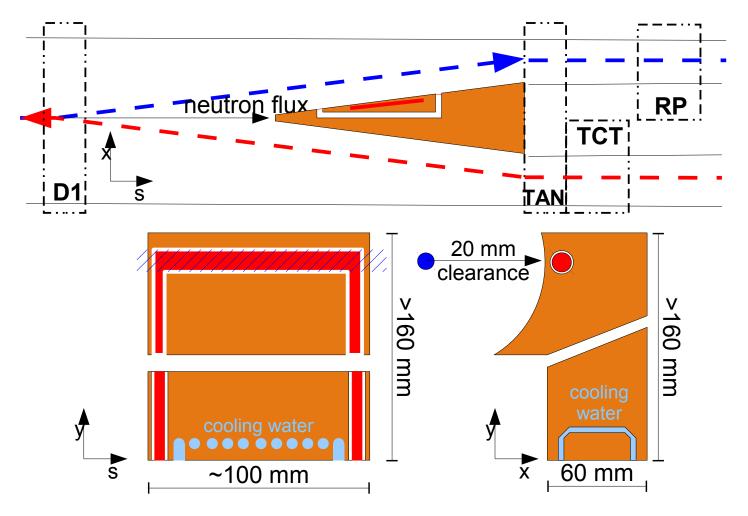
- Using collimator-type design 'kills several birds with one shot':
 - 1. provides necessary mechanical stability (N.B. 1 m long wire)
 - 2. easy wire position control, integration and exchange option
 - 3. intrinsic heat sink, conducting thermal losses far away to where these can be safely coupled out of the tank
 - 4. Easy/we have experience w.r.t. integration BPM buttons, etc.
 - 5. Depending on jaw-material choice, shielding of RF beam IC to reduce impedance and potential wire resonances
 - Min. insulation + copper surface (skin depth): 0.3 mm tbc.)

 However, a true 'TCT' like functionality implies some constraints on material choice and trade-off w.r.t. robustness vs. cooling vs. Impedance

	Th. Cond.	El. Cond.	δ@40 MHz	δ@1 GHz
	[W m ⁻¹ K ⁻¹]	[Ω m]	[µm]	[µm]
Copper	401	1.7·10-8	~10	~2
Tungsten	173	5.6·10 ⁻⁸	~10	~2
SiC*	360 - 490	8.3·10 ⁻³ - 3	~mm	~mm
Carbon		3·10-6 8·10-4		
Diamond	900232041k	~1012		


more robust

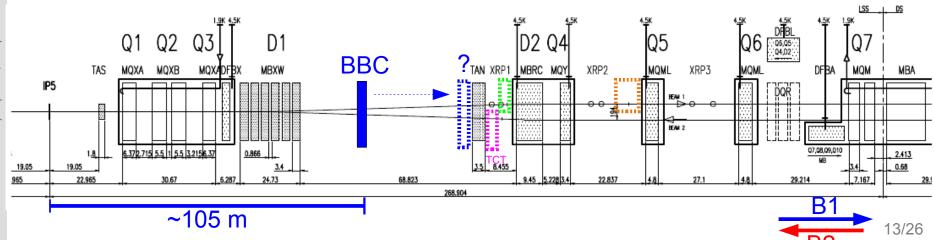
better impedance


Proposed LHC Beam-Beam Compensators Prototypes I/III – Option I (nominal): between D1 ↔ TAN

- The ideal/reserved BBC location is more challenging
 - Physical margin of 110 → 165 mm & $β_{x/y}$ ≈ 1000 m (for β*= 0.55 m), depends highly on planned HL-LHC scenario, cons./safe assumption: $σ ≈ 0.7 \dots 1$ mm for nominal optic, ε=3.6 μm and 7TeV → 3.5 TeV
 - would gain for larger β* and/or smaller ε, e.g. 2 μm
- Assuming that we require a minimum physical 20 sigma clearance (x2) for the BBC in the parking position → leaves only about 70 mm for BBC
 - Re-check whether we can move closer towards TAN

Proposed LHC Beam-Beam Compensators Prototypes II/III – Option I (nominal): between D1 ↔ TAN

- Non-neglible n-flux, impedance and TAN aspects need detailed simulations
- Materials choices: Cu, W, Carbon, SiC (doping issues?), (CVD) Diamond
- Major design and qualification effort, unlikely to be ready before LS1!



Proposed LHC Beam-Beam Compensators Prototypes III/III – Option II TCT-like BBC

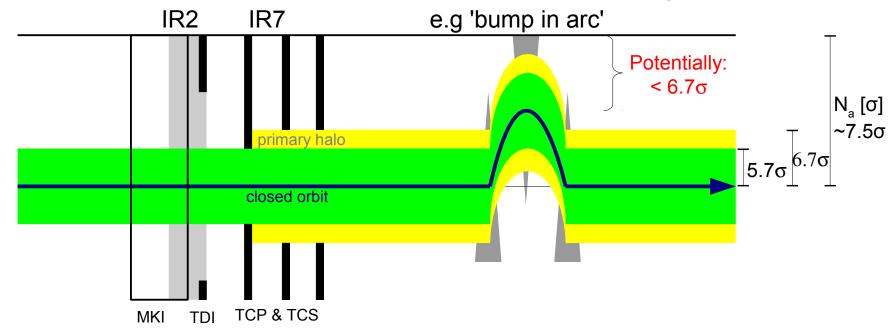
- Alternate options implying an easier integration and potential LS1 installation
 - B) Combined TCT-BBC at the present TCT locations
 - some constraints on material
 - C) Replacing roman pots (BBC targets HL-LHC)
 - D) Between Q4 & Q5 → needs further simulations

similar in terms of impact on MP

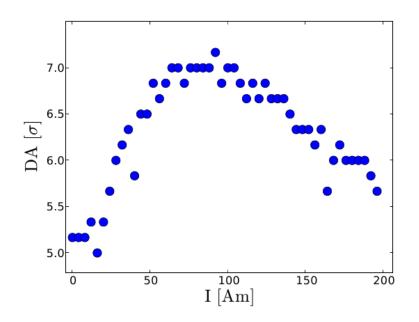
- Advantage could re-use even the same vacuum tank design as TCTs
 - Could be integrated and deployed
 - beside n-flux, other aperture/MP issues remain the same)
 - Need some early indication to prepare machine for additional vacuum valves, BPM and control cables, water, power cables, etc.

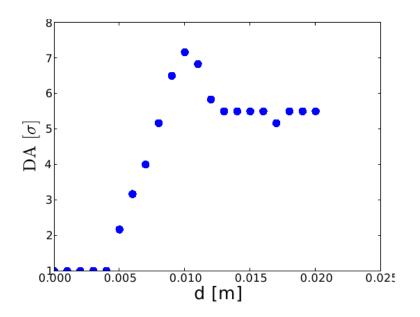
a first proposal, Ralph. Steinhagen@CERN.ch, 2011-08-05 LHC BBC

Conclusions


- Planned BBC prototype deployment to assess its potential in view of HL-LHC
- 'Wire-in-jaw' design: robustness, thermal and impedances management
 - originally BBC between D1↔TAN: possible but likely only for LS2
 - Preference for TCT-style design (could be prepared/installed for LS1):
 - combined with TCT, replacing roman pots, or between Q4-Q5 (tbc.)
- LHC BBC can be made compatible with MP requirements, provided it is either
 - a) always in the shadow of the TCT
 - b) or provides similar combined function as TCT (wire-in-jaw design)
 - robustness issues affecting material choices (Copper → Carbon?)
- Need an indication of the level of robustness required, e.g.
 - TCT-type BBC: needs to rely on more robust materials
 - MD-type BBC: moved-in only during special MDs → is Cu an option?
- Next steps:
 - Detailed specification including MP and collimation considerations
 - Re-evaluate shifted location → ongoing T. Rijoff
 - Comparison with alternate schemes (e.g. half-integer WP)
 - LR-BB Compensation Workshop...

Compromised Machine Protection via Orbit Bumps


Combined failure: Local orbit bump and collimation efficiency (/kicker failure):


- Primary collimator (TCP) limits $|x_{\beta}(s)|_{max}$ locally to <5.7 σ , secondary collimator (TCS) at~ 6.7 σ
- To guarantee two stage cleaning efficiency/machine protection:
 - Local: TCP must be >0.7 σ closer than TCS w.r.t. the beam \rightarrow Orbit FB
 - Global: no other object (except TCP) closer to beam than TCS
- → Orbit bumps may compromise function of machine protection/collimation
- → tackled by LHC Orbit Feedback

BBC Beam-Wire Distance Dependence

(a) A current scan of the BBLR at 9.5σ shows a wide current region where the compensation is efficient.

(b) The DA as a function of the beamwire separation d for I=82Am.