PFAUWADEL Mathias

DIDT SYSTEM

<u>Summary</u>

- Introduction
- Theory
- Specification
- Implementation
- Measurements
- DidtBox
- Conclusion

Theory : Purpose

• Evaluate the loss of the BEAM using the beam intensity.

Trigger the dumping when there is too much losses

Theory

- Sum all the amplitudes during one turn
- Calculate the average for 1,4,16,64,256,1024 turns
- Calculate the loss for 1,4,16,64,256,1024 turns
- Compare the loss to threshold which are depending of energy

- Box in aluminum (4x45x65mm)
- 2 Channels for BEAM1, BEAM2
- Critical part only in Hardware
- Acquisition of data by Ethernet
- Remote programming of the FPGA by Ethernet

Implementation : NIOS Software

Implementation : Software

Measurements

Bunch Amplitude Amplitude(bits) Time(us)

1 revolution of LHC ≈ 90 us

Measurements

1 revolution of LHC ≈ 90 us

Measurements

Bunch Amplitude

DIDT BOX

DIDT BOX

<u>Planning</u>

- Analyze the Bunch result using FESA class (1st October)
- Modified the FPGA firmware to add a second channel (15 October)
- Install two boxes. (7th November)
- Storage data in a timber database (End of November)
- Final System (February)

THANK YOU FOR YOUR ATTENTION QUESTIONS?