BCM for LHC

Beam Current Change Monitor

Collaboration: D. Belohrad, B. Todd, M. Zerlauth (CERN) M. Werner (DESY)

Presentation of Matthias Werner, 1 July 2010 With comments and corrections added

Purpose of BCM

- Fast detection of beam current drop, → beam dump
- Additional protection for LHC against fast beam losses
- Protection complementary to Beam Loss Monitors
- For unforeseen cases where Beam Loss Monitors might not work as expected
- Only backup protection → high reliability not so critical

Old HERA experience: Fast ACCT beam loss alarm

CERN BCT Hardware

See papers / posters of D. Belohrad:

- 4 channels: High/Low gain, High/Low Bandwidth
- Interleaved Integrators
- 14-bit-ADC
- Baseline reconstruction at dump gap
- Mezzanine card for DAB card

Use existing hardware or design new one?

single bunch measurement and a precise absolute measurement not necessary \rightarrow concept can be changed with the following advantages:

- Independent of offsets in signal path
- Independent of toroid low cutoff frequency
- Simple and uncritical calibration once at commissioning
- Inherent baseline suppression
- High noise suppression also for frequencies < 100kHz (interesting because of power converter noise)
- Can be configured to work independent of parameters (e.g. thresholds) set by Control software (with fixed thresholds or thresholds derived from SMP = Safe Machine Parameters)
- High resolution
- → Easier to get high dynamic range and high resolution → proposal for new design!

New BCM hardware concept

Structure of the 40MHz bandpass filter (first stage with $Q \approx 2$)

$Zi \approx 50\Omega$ for "all" frequencies

Signal simulations (1)

Red: raw signal from BCT Blue: Sampling Clock 160MHz Green: output of 40MHz filter

1 bunch

20 bunches

Signal simulations (2)

Detail from "20 bunches"

Dynamic range and noise (1)

Amp. Input referred: Terminated 50R noise +3.5dB→0.67nV/√Hz, 0.47Vpp ADC: 2.25Vpp, SNR=77dB →noise=112uV RMS With BW=80MHz: 12.5nV/√Hz

Theoretical min. dump threshold (1 bunch = 1.7*10^11 p)

Worst case SNR of ADC at 40MHz: 75.6dB @ -1dBFS \rightarrow 17 000 : 1

Average over 2808 bunches: Degrade / $\sqrt{(2808+7)} = 53$

Average over 1 bunch: Degrade / $\sqrt{(1+7)} = 2.83$

(+7 because of 40MHz-filter ringing)

Subtraction Top – Bottom: Degrade / 1.41

Alarm threshold 10 sigma (→Spurious Dump Probability = 1.6*10^-23 per "alarm input value"): Degrade / 10

For 2808 bunches:

Average 1 Turn: 22.7 : 1 → 7.49*10⁹ p

Average 1 ms = 11 turns: 75.2 : 1 \rightarrow 2.26*10⁹ p

Average 10 ms = 112 turns: 240 : 1 → 7.08*10⁸ p

Average over 1024 turns: 726 : 1 \rightarrow 2.34*10⁸ p

"Dynamic range" (ADC + statistics)

Full scale voltage (peak-peak) / noise (RMS):

Result	63 900
Alarm threshold 10 sigma	/ 10
Subtraction Top – Bottom	/ 1.41
Average over 2808 bunches	* 53
75.6dB @ -1dBFS	
Worst case SNR of ADC at 40MHz:	17 000

Corrections / Options:

ADC SNR is typical (76.8dB), not Worst case (75.6dB)	* 1.15
Averaging over 4 parallel ADCs	* 2
non-optimum ADC design	/ 1.5
Unforeseen effects, insufficient shielding	/ 2
Averaging over multiple turns	√(turns)

Table: <u>Theoretical</u> Resolution

Averaging over	RMS resolution		Dump threshold	
	2808 bunches filled	1 bunch filled	2808 bunches filled	1 bunch filled
	→ 4.8*10 ¹⁴ p	→1.7*10 ¹¹ p	→ 4.8*10 ¹⁴ p	→1.7*10 ¹¹ p
1 turn	7.5*10 ⁸	4.0*10 ⁷	7.5*10 ⁹	4.0*10 ⁸
1 ms	2.3*10 ⁸	1.2*10 ⁷	2.3*10 ⁹	1.2*10 ⁸
10 ms	7.1*10 ⁷	3.8*10 ⁶	7.1*10 ⁸	3.8*10 ⁷
1024 turns	2.3*10 ⁷	1.3*10 ⁶	2.3*10 ⁸	1.3*10 ⁷

Practical resolution

Effects which could degrade resolution:

- ADC nonlinearity
- EMI from power converters and other sources, affecting the BCT toroid → tests with no beam
- Position dependence of BCT \rightarrow test with local bump
- Magnetic effects in toroid (no effects expected by experts)
- Timing jitter (improve by using directly 400 MHz RF?)
- What else?

What resolution do we really get? → First go for 0.1% in 1 ms!

Protection levels

Protection level (full beam) for reaction time <u>= 1 ms</u>	Number of particles	Part of full beam (4.8*10^14p)
Useful *	4.8*10 ¹²	10 ⁻²
(old Hera system)		10 ⁻²
good	4.8*10 ¹¹	10 ⁻³
First performance goal of BCM	4.8*10 ¹¹	10 ⁻³
damage level (7TeV) *	1-2*10 ¹⁰	3-6*10 -5
Theoretical performance limit of BCM (with 1 ADC)	2.3*10 ⁹	4.8*10 ⁻⁶
Full protection (7TeV) *	1*10 ⁹	2*10 ⁻⁶

* R. Schmidt: LHC REQUIREMENTS TO MEASURE FAST CURRENT DROPS (CARE Lifetime Workshop 2004)

Signal Processing Algorithms, FPGA Firmware

- 40MHz digital filter
- Phase tracking loop
 - Initialize Si5326 chip
 - Calculate delays (initialize at injection, then track)
 - communicate delays to Si5326 chip
- Threshold tracking (fast up, slowly down)
- 2 (or 6?) Averaging stages (sliding windows!) over 1 to 1024 turns
- "Bucket mask": only average buckets which contain beam
 - Adapt mask (only at injections? Algorithm?)
 - Apply mask
- Interlock generation
- Peak beam change detector for commissioning
- Optional: compare turn subdivisions (if single bunch losses are possible)
- Receive SMP signals to set thresholds depending on beam energy

40 MHz digital filter algorithm

4 Samples per 40 MHz period (= 160 Ms/s):

R&D issues

- To track noise, a second ADC evaluation board (and a second ADC channel to the FPGA) can be necessary for correlation measurements in order to distinguish between noise / drift from the BCT and noise / drift from the new components.
- Check different hardware options
 - Amplifier type
 - Filter type
 - ADC driver type

— ...

To be done now

- Measure the spectrum at the output of the RF distributor with everything (power converters, cavity RF) switched on but no beam.
- Test BCT output change versus beam position change in both directions
- Order components, make prototype, measure system behaviour

Open questions

- Threshold tracking:
 - which slope up (at injection)?
 - which slope down (operation)?
- Can losses occur in only one or a few bunches? → if yes: extra algorithm possible to increase sensitivity for this case.
- Instead of 2 concurrently running averagers (adjustable between 1 and 1024 turns): 6 fixed averagers over 1, 4, 16, 64, 256 and 1024 turns (89us, 0.36ms, 1.4ms, 5.7ms, 23ms, 91ms)? Or 3 fixed averagers over 1, 16, 256 turns?
- How to derive thresholds from beam energy?
- → if not: Ok to offer only averaging over 1, 2, 4, 8, 16, ..., 1024 turns?
- Use 40MHz bunch clock from BST or 400MHz from RF system (less jitter)?
- Necessary or useful to compare turn subdivisions (if single bunch losses are possible)?
- Should we use the Turn clock?
- Useful to synchronize averaging to beam dump gap (to gain speed)?

Decisions

- System should be designed to work with bunch charges up to 1.7*10¹¹ p (nominal: 1.1*10¹¹ p).
- We first go for a prototype with a resolution of at least 10⁻³ at full charge and then decide if we can/want to improve it.
- Name of system: "BCM"

Thank you for listening!

Supplementary transparencies

Some LHC parameters

RF frequency	400.789 MHz
Bunch frequency	40.0789 MHz
Harmonic number	35 640
Revolution frequency	11 246 Hz
Total theoretical bunch places	3 564
Total bunches filled	2 808
Nominal / max. bunch charge	1.1*10 ¹¹ / 1.7*10 ¹¹
Nominal / max. total charge (2 808 bunches)	3*10 ¹⁴ / 4.8*10 ¹⁴
Pilot bunch charge	5*10 ⁹

ADC noise

Effective number of bits: ENOB = (SINAD[dB] - 1.76) / 6.02

Transition noise (grounded input): LSBs = $2^{ADC_bits} / 10^{SNR/20} / \sqrt{8}$

Quantization noise of ideal ADC: 1 / $\sqrt{12}$ LSBs = 0.29 LSBs

To be more precise: SNR is the sum of real noise and quantization noise Dynamic range: Full ADC voltage range / noise (RMS) = $\sqrt{8} * 10^{SNR/20}$

Aperture delay jitter: $SNR_{JITTER} =$ $-20*log(2\pi*f_{in}*t_{jitter})$ \rightarrow 72.0 dB for 40MHz and 1ps

Output amplitude of bandpass for narrow input pulses

For a sequence of narrow pulses with frequency *f*, a bandpass with 0 dB passband attenuation and center frequency *f* outputs a sine wave with following amplitude:

$$U_{pk} = 2 \cdot f \cdot \int_{InputPulse} U(t) \cdot dt$$

Example:

Pulse shape: Amplitude=1V, Trise=0.5ns, Ton=0.5ns, Tfall=0.5ns \rightarrow Integral U(t)*dt = 1nVs

Pulse frequency = Bandpass center frequency = 40 MHz

 \rightarrow Output amplitude = 80mV (=160mVpp)

Hardware decisions

2nd Filter 40MHz:

- Input impedance compensated Bandpass?
- uncompensated Chebychev Lowpass? Amplifier:
- Operational amplifier (e.g. LMH6703 or OPA687)? → Low S12
- Microwave Gain Block (e.g. GALI-74+ or GALI-51+ or ERA-5XSM+? → Low Noise

Additional High Gain Channel (Gain * 4 ?)

- useful for operation where all bunches are < 25% nominal
- Useful for single bunches

ADC array:

Possibly improve SNR by using 4 ADCs (6 dB) → extra R&D, large PCB, critical design

Shielding

• Shielding of the filters, the preamplifier, the ADC?

50R-Input-Resistor:

Which type of 50R Resistor at input? 0.25W at full machine and good RF properties! →1W type?

What else?