Ion quench test MD: motivation and proposal

<u>G Bellodi</u>, for the collimation team

Ion quench test MD: motivation

Following the results of the proton DS quench test (May 2011), we tried to estimate by extrapolation the ultimate collimation-related intensity limit for Pb ions:

$$\eta N_{MAX} = \tau R_q$$

 τ = 3600s, η =0.045 exper. values from ion loss maps, Rq from proton MD results (~100W in DS)

Expected performance limit for ion beams (IPAC'11 paper) \rightarrow

- 1.7x10¹¹ ions at 3.5 Z TeV (~4x the nominal ion intensity)
- 3.2x10¹⁰ ions extrapolating at 7 Z TeV (or 80% of the nominal ion intensity)

Several assumptions:

- □ minimum beam lifetime independent of beam energy and intensity,
- identical cleaning inefficiency
- □ lower quench limit scaling with magnet current (x2.5)

Substantially higher than nominal intensities could be within reach by the injectors \rightarrow interest to push for limits

Ion quench test MD: motivation

Moving backwards and in parallel to protons :

100W DS leakage \approx 500kW primary proton losses Due to x100 worse η , set the ions limit at 5kW:

5kW=1E8 ions/8.9E9 charges at 3.5 Z TeV in 1 s

Independent validation of the assumed lower DS quench limit came from the analysis of ion loss maps measured during the ion run setup in November 2010:

two cases were identified for worst collimation efficiency:

- i. a vertical loss map with B1 taken on 07/11/2010, where 4.88E9 charges were lost (nearly a quarter of a bunch).
- ii. a horizontal loss map with B2 taken on 08/11/2010, where 8.89E9 charges were lost (about one full bunch).

Further proof that ~1E10 charges can be safely dumped in IR7 without quenching a magnet ..

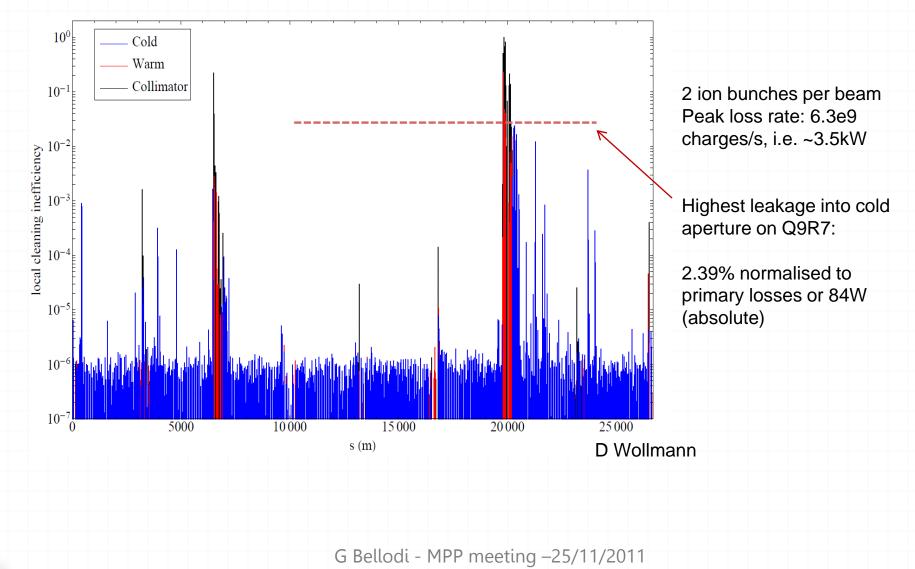
Ion quench test MD: procedure

Following the proton case:

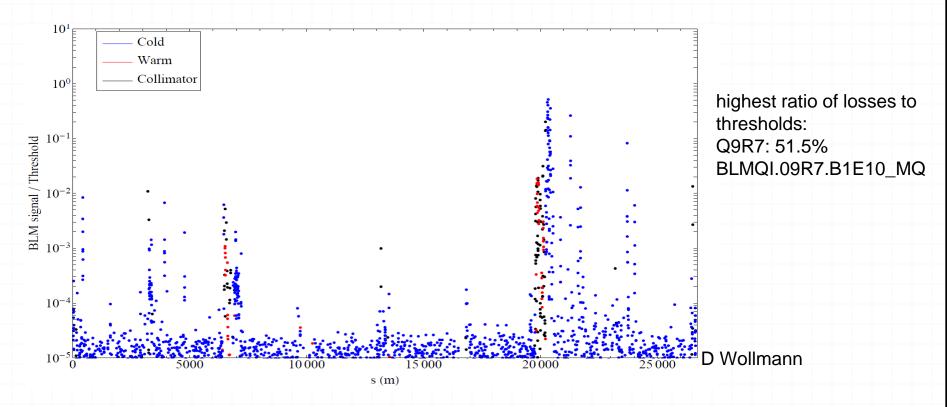
Number of MD's	1
Time required per MD [h]	8, 2 fills minimum
Beams required [1, 2, 1&2]	1&2 (one at a time)
Beam energy [GeV]	3.5TeV
# of bunches	Rescale to quench limits (*)
Optics (injection, squeezed, special)	Nominal optics, un-squeezed, non-colliding
Bunch intensity [No. of Pb ions]	Nominal bunch (~7E7 ions)
Transv. emittance [m rad]	Not relevant
Bunch length [ns @ 4s]	Not relevant
Optics change [yes/no]	Reduced crossing/separation (if beam-beam allows) to minimize losses in the IRs.
Orbit change [yes/no]	No
Collimation change [yes/no]	No: nominal settings validated at injection.
RF system change [yes/no]	No
Feedback changes [yes/no]	No
What else will be changed?	No
Are parallel studies possible?	No
Other info/requests	Changes of BLM thresholds, relaxed setup beam flags

- Adjust BLM thresholds and drive to HW.
 First fill at <u>near to quench limit beam intensity</u>, ramp to flat top.
 Switch tunes (hor/ver).
 Perform <u>horizontal</u> loss-maps with both beams (one beam at a time) by going onto 3rd integer resonance. (Alternative approach by exciting some bunches with the use of the ADT transverse dumper not fully validated yet-?).
 During ramp down:

 calculate maximum loss rate (i.e. loss power) achieved.
 Extract BLM signals during highest losses and plot ratio of BLM-signal to threshold for
- 6. Step up in intensity by factor of 2-3.


the whole ring.

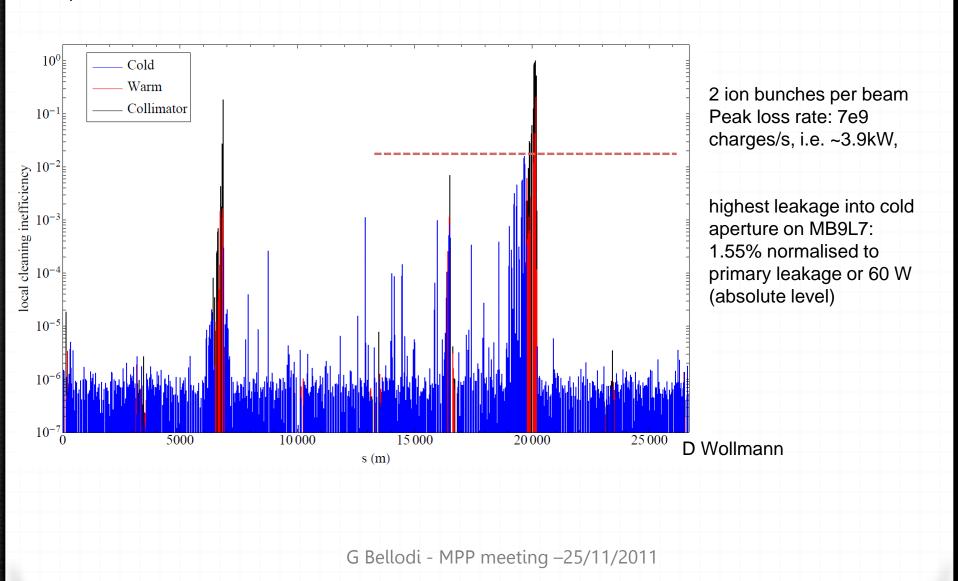
- 7. Repeat exactly the same procedure as done before.
- 8. If there is enough time left for a third ramp: repeat analysis, refill, ramp and repeat losses with an additional step up in intensity.


(*) Rescale 2011 losses to assumed quench limits to find beam intensity settings for for the two fills.

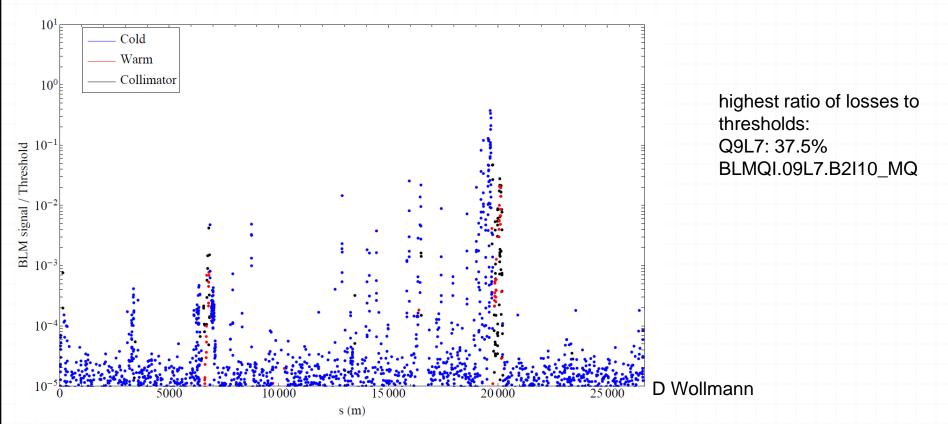
Loss maps 06/11/2011 - squeezed optics, separated beams

1) B1 horizontal – normalised losses

Ratio of losses to BLM thresholds – B1 horizontal


Fill #1: scale to assumed quench limit (x3 dump threshold) and assume constant loss rates factor of 3/0.515 ~=6 → inject 12 bunches (~ 1.6e11 charges)

Fill #2: scale to 3x assumed quench limit (x9 dump threshold) and assume constant loss rates


factor of $6x3 = 18 \rightarrow$ inject 36 bunches (~ 4.8e11 charges)

Loss maps 06/11/2011 - squeezed optics, separated beams

1) B2 horizontal – normalised losses

Ratio of losses to BLM thresholds – B2 horizontal

Fill #1: scale to assumed quench limit (x3 dump threshold) and assume constant loss rates factor of 3/0.375 = 8 → inject 16 bunches (~ 1.9e11 charges)

Fill #2: scale to 3x assumed quench limit (x9 dump threshold) and assume constant loss rates

```
factor of 8x3 = 24 \rightarrow inject 48 bunches (~ 5.7e11 charges)
```

Procedure

Before the MD:

Adjust BLM thresholds and monitor factors for the IR7 tests. Drive the new thresholds to hardware. Perform MCS check.

Perform BLM sanity check

During the MD

Inject 12(16) bunches (B1/B2), ramp to flat top.

Force very relaxed SFB true.

Mask MASKABLE BLMs.

Switch tunes (hor/ver). Perform horizontal loss-maps with both beams (one beam at a time) by going onto 3rd integer resonance.

During ramp down recalculate scaling factors

Step up in intensity by a factor of 3 (36/48 bunches for B1/B2).

Repeat loss maps.

If there is enough time left \rightarrow third ramp?

After the MD

Remove all masks and revert to normal thresholds.

Procedure (ii)

BLM threshold changes required in:
 -B1: 25 cold magnets, 3 collimators and no warm magnets
 -B2: 22 cold magnets, 2 collimators and no warm magnets

□ Doc in preparation for further checks and approval.

□ Proposed time window for the test: during the last week of ion operation, but not right at the end! Tentatively on Dec 3rd (or between 4th -6th Dec) ?