## Status of the FLUKA machine models from the RP locations to the DS for IPI and IP5

### **Outline:**

- The FLUKA LHC models framework;
- The Totem Roman-Pot geometry model for FLUKA;
- Integration of the Totem Roman-Pot in the IR5 model;
- Missing information;
- Time schedule definition;
- Conclusions.



Vittorio Boccone for the Fluka Team (EN/STI)

# The FLUKA LHC models

Preparation and construction of the machine models:

- The areas around IPI and IP5 were already studied in details for different cases (TCT accidental scenario, quenching of the triplet etc...);
- Totem and ALFA roman pots were not considered up to now;
- We will use a new framework for the automatic preparation of the model (builder + element database + TWISS files).

### Totem and ALFA will be treated from us as collimators as they are:

- Moving devices;
- On a single beam;
- Asymmetric (i.e. external IR5.right, internal for IR5.left).

# Examples IR5 and IR1



MPP 02/12/11 - V.Boccone - Status of the FLUKA machine models from the RP locations to the DS for IP1 and IP5

# The Totem RP FLUKA model

Totem Detector model (V.Boccone and F.Ravotti)

- The Roman Pot model was redone from scratch using the production drawing;
- Modular approach: the models of the two units (V-H and H-V) and the detector are independent;
  - Easy integration in the new LHC Fluka framework (seen as a collimator);
  - Can be used as a stand-alone model;
- Only the relevant details were included;
- More details can be added on request.





MPP 02/12/11 - V.Boccone - Status of the FLUKA machine models from the RP locations to the DS for IP1 and IP5

# Integration in the IR5 model







### BLMs, RadMon and other detectors (together with the relevant simulated responses) can be easily added to the model on request.

MPP 02/12/11 - V.Boccone - Status of the FLUKA machine models from the RP locations to the DS for IP1 and IP5

# Missing information

### **Requirements:**

<u>Mandatory</u>

- for ALFA and Totem:
  - Define the accidental scenarios and the requests (together with MPP);
  - Define the optics cases:
    - Complete thick lens TWISS files (BI and B2) or in alternative the madX script to generate them;
    - Any beam offset in respect to the ideal orbit?
  - Normalization factor (physics case, number of impinging protons)
  - Aperture/position of the detector in respect to the beam.
- for ALFA only:
  - Is the Totem RP-station valid for ALFA?
  - Detector model, integration and drawings;
  - <u>We need a contact person for the detector, the</u> <u>drawings, the materials etc...;</u>

### **Optional**

 Question: Will there be any help in the design of the FLUKA model of the detector from the ALFA/Atlas collaboration?

# Time schedule definition

## Once the necessary information is received (and the RomanPot models are ready):

Preparation of the model ~I-2 weeks FTE (for Totem OR ALFA)

- Includes test of the scoring (energy deposition, dose);
- If reworking of the geometry is required it can go up to 3 weeks FTE.

### Simulations (depends on the specific case)

- The time needed for the simulation dramatically depends on the case to simulate (and the up to where we extend the model);
  - i.e. a simple case of ideal direct beam impinging on RP window and quenching study of the DS magnets can take easily >2 months;
- Our approach to the problem will also depends on the case.

#### Analysis of the results (~I-2 weeks FTE)

- Check statistics;
- Power deposition on the sensitive/critical devices;
- The interaction and the involvement of the MPP and the experiments are required.

## Conclusions

- Together with F.Ravotti (PH-DT) we already introduced the Totem Roman Pot Units and its detector in our Fluka Element Data Base.
- The RP were already included in the new PI and P5 model (w/o inner detector).
- Before deciding the strategy for simulation we need to define:
  - the contact persons for ALFA and Totem for integration, detector, and optics;
  - the contact person for the machine to define the accidental case;
  - the input parameters (optics, physics case, etc....);
  - the MPP requests (devices at risk, etc...);