TOTEM Running Strategy for 2012

1. Run at $\beta^* = 90$ m

- request: 1 fill early after start-up
- 4 bunches of $(6-7) \ge 10^{10} \text{ p/b}$
- verify measurements from Oct. 2011
- align and operate RP 220 and RP 147
- (momentum spectrometer for diffraction, vertex resolution)
- take data together with CMS : Triggers from T1/T2, RP, CMS

2. Runs at high β^* (~ 850m)

- aim: reach the Coulomb region, measure $\boldsymbol{\rho}$
- request: 2 long physics fills
- 3. Running in standard fills with STABLE_BEAMS at low β^*
 - RP positions at high beam intensities:
 - $V @ 14 \ \sigma$ was tested in October and operationally ok
 - H @ 18 σ was unreachable due to high beam losses (@ 21 σ : BLM almost dumped) despite prior validation by loss maps (but positions based on old alignment)!
 - \rightarrow need more conservative horizontal position, to be tested in more detail
 - Physics objectives:
 - * stand-alone runs :
 - large-|t| elastic scattering, interesting if E > 3.5 TeV

DPE, using RP147 and RP220 as spectrometer \rightarrow need beam-based alignment

* common data taking with CMS (already in preparation)

Running Strategy beyond 2012

1. High β^* Runs

- to be repeated after each increase of energy
- (\rightarrow additional energy points for elastic and diffractive scattering)
- push β^* to higher values with the final goal ~1540 m (necessary to measure ρ at 14 TeV)
- runs at intermediate β^* (e.g. 90m) depending on experience with very high β^*

2. Standard β^* Runs

- cooperation with CMS to be intensified
 - $(\rightarrow$ hard diffractive physics)
- run frequency depending on experience in 2012
- (detector rates, potential radiation damage, reachable horizontal detector position)

\rightarrow No end of Roman Pot Operations in the foreseeable future.

Backup

Elastic Scattering Acceptance

Example: RP220 detectors at 10 σ from beam centre

Smallest reachable (and usable) |t|: value at 50% acceptance $|t_{50}|$

But: Silicon detector is further away from the beam than the outer pot window (window thickness + gap):

$$n_{\sigma,\text{det}} = n_{\sigma,\text{RP window}} + \frac{\delta_{\text{gap}}}{\sigma_{\text{RP}}} = n_{\sigma,\text{RP window}} + \underbrace{\frac{\delta_{\text{gap}}}{L_{\gamma}^{eff}}}_{\varepsilon_n} \qquad \delta_{\text{gap}} \approx 0.4 \text{ mm}$$

 L_y^{eff} not easily predictable for unknown optics, For now assumed constant (265m @ β *=90m, 273m @ β *=1540m). But this depends on the details of the optics.

How to reach the Coulomb Region ?

- Low emittance is a key requirement
- To reach the Coulomb region, $\varepsilon_n < 2 \ \mu m$ rad and $\beta^* > 850 \ m$ is needed (assuming RPs at 5σ)
- RP positions have to be calculated based on actual not nominal emittance, otherwise no gain in t !
- Parallel-to-point focussing in y is required, but it can be dropped in x.

TOTEM

t-Acceptance for Different Energies

At 8 TeV the pots have to move by ~1 σ closer to reach the same t as at 7 TeV. → If possible, develop high- β^* optics at 7 TeV.

TOTEM

t-Acceptance for Different Energies

