Operational Procedures for Abort Gap Cleaning

Jan Uythoven

Thanks to: W.Bartmann, C.Bracco, E.Gianfelice, B.Goddard, W.Höfle, V.Kain, M.Meddahi, D.Valuch

Abort Gap Cleaning at 3.5 TeV / 4.0 TeV

- No changes for energies below collision energy
 - $\hfill\square$ Abort gap cleaning always on at injection
 - □ Abort gap cleaning not needed on the ramp
- Proposal to be applied to proton running, from start-up 2012 onwards
- Cleaning ideally left on all the time, but this costs us a few percent in luminosity, so only switch on when required
 - Might be better in the future after improvements of the transverse damper hardware, mainly in LS1
- Cleaning always to be applied simultaneously to both beams
 - □ Avoid any confusion
 - Abort gap population of the two beams are often correlated, for some non understood reason...
- Relies on application to better monitor Abort Gap Population (fixed display) and more easily enable / disable cleaning or change cleaning strength
 Delphine, GHH, Verena
- If AGC switched on with too large abort gap population, order of 1e12, the losses on the TCP collimators risk to dump the beam at the worst moment
- Tried to keep procedures simple, to avoid confusion

BSRA protons, few days in October

Proposal

- l_{ag} > 5e9 p+
 - LHC announcer to ask for abort gap cleaning to be activated, similar to request of lumi optimisation for experiments
 - $\hfill\square$ Based on 2011 experience this would be a few times per month
 - □ The operator needs to check abort gap population over last hour (fixed display on application) and see if it can be trusted (see next slide). If so:
 - Switch on cleaning at 50 % of nominal strength, long cleaning pulse (2.5 μs)
 - During a few minutes, check BLM losses around the ring, should stay below 25 % of dump level
 - If ok, switch on cleaning at 100 % nominal strength
 - The cleaning should never be switched on when population > 1e12 p+
- I_{ag} < 4e9 p+
 - □ Switch cleaning off
- I_{ag} > 1e11 p+ AND I_{ag} < 1e12 p+</p>
 - Manually dump the beams
- I_{ag} > 1e12 p+
 - □ Logically one should never arrive here
 - Don't touch. Wait for decay below 1e12 p+ and dump the beams (max population is 3000/50 * 1.5e11 = 9e12 p+)

Summary of procedures

Can you trust the BSRA readings?

- Check the "is valid flag" of the BSRA
 - □ Should be in application to be written
- Check that there are no huge jumps or sudden 'unphysical' changes
- If population is important, should see this as an increment of IP3 losses
 - Don't dump above 1e11 if IP3 losses have not been going up as well
 - □ Put IP3 and IP7 BLMs also in the application's fixed display

Question 1:

- □ Markus:
 - If we arrive at >1e12 this very likely means that the gap population for some reason is continuously increasing and that we missed the announcements/dump occasions, so maybe the increase is outweighing the natural cleaning. Should we maybe think of a very cautiously increased cleaning, e.g. start with few % cleaning strength and increase it slowly as a function of losses seen?

□ Jan:

- More than 1e12 is very unlikely and the RF or BLM losses will probably already have dumped us
- Cleaning above 1e12 population is likely to dump the beam on losses in IP7, so don't increase or start cleaning: play with fire
- All experience so far has shown a 'wave behaviour' in abort gap population, so better dump on a low.

Question 2:

- Markus:
 - Should we clean every 15 or 30 min for about 2 minutes
- □ Jan:
 - Important abort gap population seems to come in 'waves' and in a few minutes
 - It is good to keep an awareness on population = RF performance and train what to do if population suddenly goes up

Check on IP3 losses, no cleaning

- Worst population seen during 2011:
 - 1.2e11 p+ in AG on B1
 - BLMs at IP3 on RS12 (83 seconds) reached 2.3 % of dump threshold
 - Also checked B2: OK
- Also considering different occasions and extrapolation: abort gap population of 1e11 p+ leads to max 10 % of BLM limits in IP3

Timeseries Chart between 2011-09-20 13:00:00.000 and 2011-89-20 16:00:00.000 (LOCAL TIME)

Most limiting TCT during that period

BLMEI.04R1.B2II0_TCTVA.4R1.B2:LOSS_RS12

—	BLMEI.04R1.B2I10_TCTVA.4R1.B2:LOSS_RS01
	BLMEI.04R1.B2I10_TCTVA.4R1.B2:LOSS_RS02
	BLMEL04R1.B2I10_TCTVA.4R1.B2:LOSS_RS03
—	BLMEL04R1.B2I10_TCTVA.4R1.B2:LOSS_RS04
—	BLMEI.04R1.B2I10_TCTVA.4R1.B2:LOSS_RS05
—	BLMEL04R1.B2I10_TCTVA.4R1.B2:LOSS_RS06
—	BLMEL04R1.B2I10_TCTVA.4R1.B2:LOSS_RS07
—	BLMEI.04R1.B2I10_TCTVA.4R1.B2:LOSS_RS08
	BLMEL04R1.B2I10_TCTVA.4R1.B2:LOSS_RS09
—	BLMEI.04R1.B2I10_TCTVA.4R1.B2:LOSS_RS12

Plot for all the different running sums

••• All TCTs over that period

_	BLMEI.04L1.B1110_TCTH.4L1.B1:LOSS_RS12
_	BLMEI.04L1.B1I10_TCTVA.4L1.B1:LOSS_RS12
_	BLMEI.04L2.B1E10 TCTH.4L2.B1:LOSS RS12
_	BLMEI.04L2.B1E10 TCTVB.4L2:LOSS RS12
_	BLMEI.04L5.B1110 TCTH.4L5.B1:LOSS RS12
_	BLMEI.04L5.B1110 TCTVA.4L5.B1:LOSS RS12
_	BLMEI.04L8.B1E10 TCTH.4L8.B1:LOSS RS12
_	BLMEI.04L8.B1E10 TCTVB.4L8:LOSS RS12
_	BLMEI.04R1.B2I10_TCTH.4R1.B2:LOSS_RS12
_	BLMEI.04R1.B2I10 TCTVA.4R1.B2:LOSS RS12
_	BLMEI.04R2.B2E10 TCTH.4R2.B2:LOSS RS12
—	BLMEI.04R2.B2E10 TCTVB.4R2:LOSS RS12
—	BLMEI.04R5.B2I10 TCTH.4R5.B2:LOSS RS12
_	BLMEI.04R5.B2I10_TCTVA.4R5.B2:LOSS_RS12
_	BLMEI.04R8.B2E10_TCTH.4R8.B2:LOSS_RS12
_	BLMEI.04R8.B2E10_TCTVB.4R8:LOSS_RS12

Plot for RS12 only

Future developments

- Dedicated application for 2012 start-up (Delphine, GHH, Verena)
 - Shows fixed display of population from BSRA
 - Take into account BSRA validation flag
 - □ Show losses BLMs IP3, IP7 and possibly also TCTs
 - Facilitate changing of cleaning parameters, can possibly automatically be adjusted depending on AGC measurement
 - Cleaning length and amplitude
- Still need something else to alert the operator besides
 - Announcer
 - Cleaning application
- If the BSRA is that important ask BI for
 - □ A more reliable BSRA system
 - Similar, but redundant BSRA system
 - Can then start cleaning automatically or dump when required
- Hardware on ADT side (see first slide)
- Tests with stronger cleaning over a shorter period