Overview of single bunch asynchronous dump failures on collimators

Luisella LARI

For the collimator team Special thanks to R.W.Assmann, R.Bruce, A.Rossi

> BE/ABP 9th March 2012 MPP meeting

Summary of what was done

- Scan over the MKD pre-fire pulse form to find the angle for which the TCDQAs are by-passed for possible misalignment → for each MKD failure mode (each 1 MKD studied separately)
- Once find the angles → <u>scan all over the LHC machine to find</u> the elements that are touched by the beam 1 or 2 kicked, playing with the location of the faulty MKD:
 - Results for impacts with beam center

Results for impact with 1/2/3 sigma x

- $\int_{1}^{2} \sigma_{x} \int_{1}^{\infty} 1 jaw$
- Particular attention was done for possible interactions with TCTs and/or TCLAs.

Reference case

"Configuration for 2012"

7TeV

- Collision energy = 4TeV, <
- Crossing and Spectrometers switched ON [4TeV→145 µrad half crossing angle in IP1 and IP5]
- Physics run with 0.6 m beta* in IP1/5 & 3.0 m beta* in IP2/IP8 (i.e. SEP OFF), ON
- Ref. optics "as-built" thin V6.503
- Transverse normalized emittance 3.5 µm rad

2.5

Collimator Aperture \rightarrow 4 TeV

Ref: Evian 2011 – R.Bruce

Beam 1	&		Beam 2		
TCP.IP7		4.3			
TCSG.IP7		6.3			
TCLA.IP7		8.3			
TCP.IP3		12			
TCSG.IP3		15.6			
TCLA.IP3		17.6			
TCT.IP1.IP2.IP5.IP8		9.0			
TCL.IP1.IP5		10			
TCLI/TDI.IP2		Tot opened			
TCDQ.IP6		7.6			
TCSG.IP6		7.1	7.1		

Scan over the MKD pre-fire pulse form (1)

Scan over the MKD pre-fire pulse form (2)

Failure MKD.A5L6.B1 1.95 [µs]; +12.39910241 [µrad]

Failure MKD.A5L6.B1 1.95 [μs]; +12.39910241 [μrad]

mm [abs] inside the jaw

Failure MKD.A5L6.B1 1.95 [μs]; +12.39910241 [μrad]

Sigma (x) inside one jaw

Same failure situation for the different MKD locations

% of intercepted beam, Gaussian distribution (error function)

Same failure situation for the different MKD locations

mm [abs] inside the jaw

Same failure situation for the different MKD locations

Sigma (x) inside one jaw

Conclusion \rightarrow Next steps

- First selection of cases for B1 and B2 using this preliminary studies with tight collimation settings.
- Following SixTrack simulations using realistic beam distribution.

- Consider magnet errors could change the hierarchies of the impacted collimators.
- Changing the aperture of collimators → change the pattern of the loads on downstream collimators/beam elements (needed FLUKA simulations).

Additional slides

Luisella LARI

BE/ABP 9th March 2012 MPP meeting

Collimator Aperture \rightarrow 7 TeV

Beam 1 &			Beam 2		
TCP.IP7		6	\rightarrow	4.3]
TCSG.IP7		7	\rightarrow	6.3	
TCLA.IP7		10	\rightarrow	8.3	
TCP.IP3		15	\rightarrow	12	
TCSG.IP3		18	\rightarrow	15.6	
TCLA.IP3		20	\rightarrow	17.6	
TCT.IP1.IP2.IP5.IP8		8.3	\rightarrow	9.0	
TCL.IP1.IP5		10			
TCLI/TDI.II	P2	Tot opened			
TCDQ.IP6		8	\rightarrow	7.6	
TCSG.IP6		7.5	\rightarrow	7.1	

Optics IP6

Beam 1

&

Beam 2

D, (m), D, (m)