Load on Q6 and Q7 for the primary beam impacting on the TCLIB

A. Christov, F. Cerutti, V. Vlachoudis

Background of this study

- April 18th 2011: 36 bunches of beam 2 impacting TDI and TCLIB due to lower kicker deflection
- Quench of 11 magnets downstream magnets

Beam Line

- Geometry build using "LineBuilder" (V. Boccone, A. Mereghetti, R. Versaci and others)
- Beam line build for longer section, but particle tracking and scoring reduced to the relevant region:

- From TCLIB.6L8 to MQMC.9L8

TCLIB - jaw position

- Half Gap = 1.9 mm (corresponds to 7σ using σ = 270 μ m)
 - The exact same value as used for producing the sample of impacting particles.
- Jaws placed symmetrically

Beam conditions

- Sample of ~ 7.9 x 10⁵ protons @ 3.5 TeV
 - Position: the first interaction in TCLIB.6L8 upper jaw
 - Each particle forced to interact there.
 - NOTE: Graphite λ_{inel} = 42.95 cm for protons @ 3.5 TeV

23.03.12

Beam conditions

• Sample of ~ 7.9×10^5 protons @ 3.5 TeV

Asen Christov

MQM.6L8

- Highest energy deposition in:
 - Beam: beam 2 side (inner)
 - Coil: horizontal inner layer E_{max} =1.6x10⁻¹¹ (± 5 %) J cm⁻³ per interacting primary

Q9

5

4

JOW/C

MBA

08

MOML

MBA

MQM.6L8

MBB

1.898

Q7

мом

DFBA

MB.OF.OD

MBB

1.9

0.68

06

TCLIB.6L8

MOM

MQML.6L8

- Highest energy deposition in:
 - Beam: beam 2 side (inner)
 - Coil: inner layer, upper

 E_{max} =1.7x10⁻¹¹ (± 8 %) J cm⁻³ p.i.p.

Q9

5

4

МОМ/С МВА

08

MOML

MBA

MQML.6L8

MBB

1.898

Q7

мом

DFBA

MB.OF.OD

MBB

1.9

0.68

06

TCLIB.6L8

1e-11

Asen Christov

MQM.A7L8

- Highest energy deposition in:
 - Beam: beam 2 side (inner)
 - Coil: inner layer

Q9

5

МОМ/С МВА

08

MOML

MBA

MQMA.7L8

MBB

1.898

Q7

мом

DFBA

MB,QF,QD

MBB

1.9

0.68

06

TCLIB.6L8

MOM

23.03.12

Asen Christov

MQM.B7L8

- Highest energy deposition in:
 - Beam: beam 2 side (inner) —
 - Coil: inner layer

Asen Christov

Q6 and Q7 results normalized

	MQM.6L8	MQML.6L8	MQM.A7L8	MQM.B7L8
Per interacting primary [J cm⁻³]	1.6 x 10 -11	1.7 x 10 ⁻¹¹	2.0 x 10 ⁻¹¹	2.9 x 10 ⁻¹²
Per bunch [J cm ⁻³] (1.15x10 ¹¹ prot.) Note: only 90% interact	1.7	1.8	2.0	0.3
288 bunches [J cm ⁻³] Note: only 90% interact	477	506	596	86

Peak Energy deposition vs. number of protons

Systematic Uncertainties

Factor for integral quantities	Factor for punctual quantities	Origin	Reason
0.7-1.5	0.7-1.5	Grazing impact	Jaw roughness dependence on the angular distribution at zero degrees
0.8-1.2	0.5-2	FLUKA physics	Interaction extrapolation at 3.5 TeV
0.9-1.1	0.75-1.5	FLUKA machine model	Geometry description

Imperfections have to be taken into account

e.g.: collimator tilting, magnet displacement, field accuracy

Imperfections discussed in:

- V. Vlachoudis & A. Ferrari, LCWG meeting, 2-3-2009
- F. Cerutti, CDR LHC Phase II Collimation, 2-4-2009
- F. Cerutti, LCWG meeting, 10-5-2010
- C. Bracco, "Commissioning scenarios and tests for the LHC collimation system"

EPFL thesis #4271 (2009)

BLMs in the region

- The BLMs close to the quadrupoles were saturated during tests
- Not safe to use BLMs far downstream

Slide from A. Lechner

Impact on signal in BLM #8

- Additional components (in particular warm vacuum modules and cold mass end cap) partially shield radiation field
 - \longrightarrow Dose decrease of \approx 40%
- Actual distance between BLM and beam pipe significantly smaller than nominal value in layout database

 \longrightarrow Accounting for actual position yields dose increase of \approx 30% due to strong radial field gradient (see plot)

Energy deposition overview

