SLHCV3.1b: HL-LHC optics overview

R. De Maria, Fartoukh

input from R. Calaga, S. White(BNL), B. Dalena(CEA)

CERN, Geneva

MPP, 2012/04/13

Introduction

SLHCV3.1b contains a realistic, nearly complete, usable optics model for an HL-LHC scenario using 150T/m triplets Based on SLHCV3.0 and ATS_V6.503. ¹ It is not final since it still depends on some working assumptions:

- interconnect lengths between magnets,
- lengths and types of triplet correctors,
- installation and relocation of several matching quadrupoles,

and misses some parts

optics transitions,

and some optimizations

- phase advance optimization for IR2/8/4/6,
- control of Q",
- position of triplet BPMS,
- IP1-IP5 phase advance (or maybe working point).

¹SLHC Project Report 49, 50, 53, 55, ATS Note 2011 33, 60, 132 and reference therein.

R. De Maria (CERN, Geneva)

LHC B1

LHC B1

LHC B1

Tune vs delta

Tune vs delta

Tune vs delta

W functions: $W\delta = |\Delta\beta/\beta_0 + i(\Delta\alpha_0 - \alpha\Delta\beta_0/\beta_0)|$

W functions: $W\delta = |\Delta\beta/\beta_0 + i(\Delta\alpha_0 - \alpha\Delta\beta_0/\beta_0)|$

W functions: $W\delta = |\Delta\beta/\beta_0 + i(\Delta\alpha_0 - \alpha\Delta\beta_0/\beta_0)|$

Non linear beta beating

Non linear beta beating

LHC Spurious dispersion

Tour

- ► Effort to keep beta function unnecessarily large, magnet strengths not too close to lower limit, minimum changes with respect to nominal.
- ▶ For IR2 and IR8 phase advances probably not yet optimal.
- ▶ For IR4 Beta at the IP preserved as much as possible, to be checked for the damper and other instruments.
- ▶ IR3 and IR7 identical just rematched for the new arcs.

IR7 B1

IR7 B1

IR8 B1

IR8 B1

IR2 B1

IR2 B1

IR3 B1

IR3 B1

IR4 B1

IR4 B1

IR6 B1

IR6 B1

IR6 dump system features

name	dpxb1	dpxb2	dxb1	dxb2	bxb1	bxb2	byb1	byb2	dmuxb1	dmuxb2
					dump	dump	dump	dump	kick	kick
	murad	murad	m 1	n	m	m	m	m	2pi	2pi
inj	0	-256	0.14	0.186	5012	5052	3955	3698	0.2631	0.2633
1111	0	-256	0.14	0.186	5012	5052	3955	3698	0.2631	0.2633
3333	0	0	0	0	5455	5867	4241	3699	0.25	0.25
4444	0	0	0	0	5743	6134	3955	3698	0.25	0.25
8228	0	0	0	0	5581	5820	6115	3698	0.25	0.25
5115	0	0	0	0	5012	5052	4063	3699	0.25	0.25
2882	0	0	0	0	7456	6818	3955	3698	0.25	0.25
1551	0	0	0	0	7244	6758	3974	3828	0.25	0.25

bxb1 bxb2 byb1 byb2: beta function at the dump dxb1 dxb2 dpxb1 dpxb2: dispersion and angular dispersion at IP6 dmuxb1 dmuxb2: phase advance between TCSG.4[RL]6 and MKD.H5[LR]6

Without injection constraints optics can be optimized for the dump system. It is possible to attempt to improve inj and 1111.

Repository: names and specs

name	β_{\times}^*	β_{\parallel}^*	$\theta_{\times}/2$	$\Delta_{\parallel}/2$	imes planes
	[m]	[m]	$[\mu rad]$	[mm]	IP1/IP5
opt_150_11000_11000	11.0	11.0	170	2	v/h, adj.
opt_150_5500_5500	5.5	5.5	245	2	v/h, adj.
opt_150_2000_2000	2.0	2.0	80	2	v/h, adj.
opt_150_0400_0400	0.40	0.40	180	0.75	v/h, adj.
opt_150_0150_0150	0.15	0.15	295	0.75	v/h, adj.
opt_150_0100_0100	0.10	0.10	360	0.75	v/h, adj.
opt_150_0075_0300	0.30	0.75	275	0.75	v/h, fixed
opt_150_0050_0200	0.20	0.05	335	0.75	v/h, fixed
opt_150_0075_0300hv	0.30	0.75	275	0.75	h/v, fixed
opt_150_0050_0200hv	0.20	0.05	335	0.75	h/v, fixed

with their thin version.

Total of 4 IR5, 7 6, 6 IR2/8 new optics, the rest really minor changes with some very similar to SLHC3.0 or ATSV6503 or the nominal LHC.

A rich toolkit and few sample jobs is provided as well derived from SLHC3.0 as well. Mask file, error assignment routines, correction filters for tracking are under preparation.

Repository: names and specs

name	β_{\times}^*	β_{\parallel}^*	$\theta_{\times}/2$	$\Delta_{\parallel}/2$	imes planes
	[m]	[m]	$[\mu rad]$	[mm]	IP1/IP5
opt_150_11000_11000	11.0	11.0	170	2	v/h, adj.
opt_150_5500_5500	5.5	5.5	245	2	v/h, adj.
opt_150_2000_2000	2.0	2.0	80	2	v/h, adj.
opt_150_0400_0400	0.40	0.40	180	0.75	v/h, adj.
opt_150_0150_0150	0.15	0.15	295	0.75	v/h, adj.
opt_150_0100_0100	0.10	0.10	360	0.75	v/h, adj.
opt_150_0075_0300	0.30	0.75	275	0.75	v/h, fixed
opt_150_0050_0200	0.20	0.05	335	0.75	v/h, fixed
opt_150_0075_0300hv	0.30	0.75	275	0.75	h/v, fixed
opt_150_0050_0200hv	0.20	0.05	335	0.75	h/v, fixed

with their thin version.

Total of 4 IR5, 7 6, 6 IR2/8 new optics, the rest really minor changes with some very similar to SLHC3.0 or ATSV6503 or the nominal LHC.

A rich toolkit and few sample jobs is provided as well derived from SLHC3.0 as well. Mask file, error assignment routines, correction filters for tracking are under preparation.

LHC IR layout

Layout changes

IR1 and IR5 triplet area ($l_{Q1} = l_{Q3}$, $l_{Q2a} = l_{Q2b}$):

IP 22.54 {.46 | Q1 | .46} .36 .12 BPM .24
 {.36 | MCBXDa | .46 | Q2a | .46 } .24 BPM .12 .36
 {.46 | Q2b | .46 | MCBXDb | .36 } .24 BPM .12 .36
 {.46 | Q3 | .46 } .24 BPM .12 .36
 {.18 .18 |MCBXC | .18 .20 .115 |MQSX3 | .115
 .20 .075 |MCDSSX3 | .075 .20 .075 |MCSTX3 | .075
 .20 .075 |MCDTSX3 | .075 .25}

D1: single sc. dipole; TAN and TCT: nominal length D2: larger aperture 2-in-1, moved towards the IP by 15m Crab cavities: 3 staggered modules per side per IP per beam Q4: larger aperture 2-in-1 Q5: long MQY type moved towards the arc by 11m Q10: added MS circuit and replaced MCBC IR6: new long MQY type Q5

Layout parameters

- 1.MQXL :=
- 1.MQX :=
- dq1q2a :=
- dq2aq2b :=
- dq2bq3 :=
- deltaposD2 :=
- deltaposQ4 :=
- deltaposQ5 :=
- deltaposQ6 :=

- 7.6850000000;
- 6.5770000000;
- 3.5600000000;
- 1.9150000000;
- 3.5600000000;
- -15.000000000;
 - 0.000000000;
 - 11.000000000;
 - 0.000000000;

Lengths in m.

Repository: names and specs

name	β_{\times}^*	β_{\parallel}^*	$\theta_{\times}/2$	$\Delta_{\parallel}/2$	imes planes
	[m]	[m]	$[\mu rad]$	[mm]	IP1/IP5
opt_150_11000_11000	11.0	11.0	170	2	v/h, adj.
opt_150_5500_5500	5.5	5.5	245	2	v/h, adj.
opt_150_2000_2000	2.0	2.0	80	2	v/h, adj.
opt_150_0400_0400	0.40	0.40	180	0.75	v/h, adj.
opt_150_0150_0150	0.15	0.15	295	0.75	v/h, adj.
opt_150_0100_0100	0.10	0.10	360	0.75	v/h, adj.
opt_150_0075_0300	0.30	0.75	275	0.75	v/h, fixed
opt_150_0050_0200	0.20	0.05	335	0.75	v/h, fixed
opt_150_0075_0300hv	0.30	0.75	275	0.75	h/v, fixed
opt_150_0050_0200hv	0.20	0.05	335	0.75	h/v, fixed

with their thin version.

Total of 4 IR5, 7 6, 6 IR2/8 new optics, the rest really minor changes with some very similar to SLHC3.0 or ATSV6503 or the nominal LHC.

A rich toolkit and few sample jobs is provided as well derived from SLHC3.0 as well. Mask file, error assignment routines, correction filters for tracking are under preparation.

Aperture model

Based on Phasel.

- MQX and MC_X: octagon scaled by the triplet aperture ($a_{\rm mqx} = 140 {\rm mm}$)
- D1: round $r = a_{mqx}/2 + 7mm$
- TAS: round r = 30mm
- BPMs: round $r = a_{
 m mqx}/2$
- TAN: ellipse a, b = 41, 37mm
- D2 and MCBYY: rectellipse g, r = (37, 42)mm for 106mm coil aperture
- Q4: rectellipse g, r = (30, 35)mm for 90mm coil aperture
- BPMs D2, Q4, Q5: round r = 41, 37.5, 30mm

Repository: names and specs

name	β_{\times}^*	β_{\parallel}^*	$\theta_{\times}/2$	$\Delta_{\parallel}/2$	imes planes
	[m]	[m]	$[\mu rad]$	[mm]	IP1/IP5
opt_150_11000_11000	11.0	11.0	170	2	v/h, adj.
opt_150_5500_5500	5.5	5.5	245	2	v/h, adj.
opt_150_2000_2000	2.0	2.0	80	2	v/h, adj.
opt_150_0400_0400	0.40	0.40	180	0.75	v/h, adj.
opt_150_0150_0150	0.15	0.15	295	0.75	v/h, adj.
opt_150_0100_0100	0.10	0.10	360	0.75	v/h, adj.
opt_150_0075_0300	0.30	0.75	275	0.75	v/h, fixed
opt_150_0050_0200	0.20	0.05	335	0.75	v/h, fixed
opt_150_0075_0300hv	0.30	0.75	275	0.75	h/v, fixed
opt_150_0050_0200hv	0.20	0.05	335	0.75	h/v, fixed

with their thin version.

Total of 4 IR5, 7 6, 6 IR2/8 new optics, the rest really minor changes with some very similar to SLHC3.0 or ATSV6503 or the nominal LHC.

A rich toolkit and few sample jobs is provided as well derived from SLHC3.0 as well. Mask file, error assignment routines, correction filters for tracking are under preparation.

Why a priori 590 μrad Xangle and not the "canonical" 10 σ ?

→ Tune footprint at 6 σ with 21 LR's per IP side (longer IT), HO at IP1 and IP5, β *=15 cm and beam parameters (higher bunch charge) given in the previous table

→ 100'000 turns DA simulation results vs Xangle confirming the "pathological tune footprint" (25 ns beam parameters, β *=15 cm, only sextupoles, LR and HO, no crab-crossing no field imperfection)

S. Fartoukh, 2nd extended steering committee

Present crossing scheme

- ▶ In collision:
 - $\blacktriangleright\beta^*=15 {\rm cm},$ crossing angle $580\,\mu{\rm rad},$ separation 1.5mm
- \blacktriangleright The close orbit excursion at the cavity is:
 - $\blacktriangleright 3.35\,\mathrm{mm}$ for 10σ crossing angle

R. De Maria (CERN, Geneva)

Present crossing scheme

- ► In collision:
 - $\blacktriangleright\beta^*=15 {\rm cm},$ crossing angle $580\,\mu{\rm rad},$ separation 1.5mm
- ▶ The close orbit excursion at the cavity is:
 - $\blacktriangleright 3.35\,\mathrm{mm}$ for 10σ crossing angle

R. De Maria (CERN, Geneva)

SLHCV3.1b

New crossing scheme

- ▶ No orbit displacement at the crab cavity location nor in D2 and Q4.
- ► The corrector in D2 can be placed in the non-IP side to save strength and gain some aperture for horizontal crossing
- ► Additional aperture margin in D2 and Q4 as side effect.

R. De Maria (CERN, Geneva)

Crab layout

--B1> |D2|.4|MCH|.4|MCV| 1.8 <C> 2.6 <C> 2.6 <C> 5.3 |MC|Q4| <B2-- |D2|.4|MCH|.4|MCV| 3.1 <C> 2.6 <C> 2.6 <C> 4.0 |MC|Q4| 1.D2=10 1.MCBH/V=1.5

Total voltage for the 3 modules for 590μ rad: 11.7MV and 10.7MV.

Optics (Task 2.2)

- Latest estimate for the crab-voltage at 15 cm β*:
 -9 MV (3 mod.) is fine but if Θ_c=460 µrad (9-10σ) is OK at half-current (L=5E34)??
 → detailed studies needed to determine the settings Θ_c (N_b) and V_{crab}(Θ_c) @L=5E34
 Then clear limitation showing up for lower β* e.g. 10 cm!
- Develop new ATS pre-squeezed optics and/or layout to push the beta's at the crabs (Q4) on both IR sides

not possible with the present matching section layout:
 ... the two IR sides are anti-correlated
 optics anti-symmetry) and the width of the
 matching valley is 10% only, i.e. 5% on V_{crab}

... work ongoing to improve the situation by modifying the matching section pushing the idea of a **stronger Q7**, and replacing Q5 & Q6 by 2 doublets

S. Fartoukh, 2nd extended steering committee

Optics match-ability as a function of the β 's at the crab-cavities), courtesy B. Dalena (CEA)

Single bore orbit corrector strengths

 $MCBX^2$ type orbit correctors in the non-IP side for Q1, Q2, Q3. Function: orbit correction due to misalignments and crossing scheme

Strength orbit correction: $x_{tol}g_{triplet}l_{triplet} = 0.6 \text{ Tm} \rightarrow 25 \,\mu \text{rad}$

Strength for crossing scheme (50% safety margin):

Element	Plane	crossing		separ	ation
		kick[μ rad]	field [Tm]	kick[μ rad]	field [Tm]
nominal-like round β^*					
MCBX.3	H&V	49*1.5 =73	1.7	11*2	0.51
closed round β^*					
MCBX.1	H&V	17*1.5 = 25	0.6	5*2	0.23
MCBX.3 ³	H&V	140*1.5 = 210	4.9	10*2	0.46

²nominal: 3.3T, 1.5Tm

³may be partially absorbed by D1

R. De Maria (CERN, Geneva)

2-in-1 orbit corrector strength

MCBY type (but wider aperture) either in the IP side of D2 to save vertical aperture or in the non-IP side to save strength and aperture for positive crossing angle.

-		• •		• /	
Element	Plane	crossii	וg	separ	ation
		kick[μ rad]	field [Tm]	kick[μ rad]	field [Tm]
nominal-like round β^*					
MCBYY.4	H&V	126*1.5=189	4.4	22*2	1.0
MCBY.5	H or V	32*1.5 = 48	1.1	10*2	0.46
MCBC.6 ⁴	H or V	35*1.5 = 53	1.2	12*2	0.28
closed round β^*					
MCBYY.4 ⁵	H&V	244*1.5 = 366	8.5	8*2	0.37

Strength for crossing scheme (50% safety margin):

⁴Nominal 2.5T, 2.27 Tm

⁵may be partially absorbed by D2

MCBX and MCBYY strengths

name	acbx1	acbx3	acbyy
opt_150_11000_11000	18.18	45.61	98.03
opt_150_2000_2000	5.62	21.27	47.80
opt_150_5500_5500	17.57	65.54	143.68
opt_150_0400_0400	6.62	49.73	109.97
opt_150_0150_0150	6.62	81.50	180.23
opt_150_0100_0100	6.62	99.46	219.95
opt_150_0075_0300	6.62	75.98	168.01
opt_150_0050_0200	6.62	92.55	204.67
opt_150_0075_0300hv	6.62	75.98	168.01
opt_150_0050_0200hv	6.62	92.55	204.67
max nominal values	64	64	97
reserve for orbit correction	25	25	n/a

Maximum values per family in μ rad.

Repository: names and specs

name	β_{\times}^*	β_{\parallel}^*	$\theta_{\times}/2$	$\Delta_{\parallel}/2$	imes planes
	[m]	[m]	$[\mu rad]$	[mm]	IP1/IP5
opt_150_11000_11000	11.0	11.0	170	2	v/h, adj.
opt_150_5500_5500	5.5	5.5	245	2	v/h, adj.
opt_150_2000_2000	2.0	2.0	80	2	v/h, adj.
opt_150_0400_0400	0.40	0.40	180	0.75	v/h, adj.
opt_150_0150_0150	0.15	0.15	295	0.75	v/h, adj.
opt_150_0100_0100	0.10	0.10	360	0.75	v/h, adj.
opt_150_0075_0300	0.30	0.75	275	0.75	v/h, fixed
opt_150_0050_0200	0.20	0.05	335	0.75	v/h, fixed
opt_150_0075_0300hv	0.30	0.75	275	0.75	h/v, fixed
opt_150_0050_0200hv	0.20	0.05	335	0.75	h/v, fixed

with their thin version.

Total of 4 IR5, 7 6, 6 IR2/8 new optics, the rest really minor changes with some very similar to SLHC3.0 or ATSV6503 or the nominal LHC.

A rich toolkit and few sample jobs is provided as well derived from SLHC3.0 as well. Mask file, error assignment routines, correction filters for tracking are under preparation.

Directory listing

/afs/cern.ch/eng/lhc/optics/SLHCV3.1b

aperture beambeam errors toolkit iroptics tables readme slhc_sequence.madx slhc_removeinstall.madx crab_install.madx job_makeoptics.madx job_makethin.madx opt_11000_11000.madx opt_5500_5500.madx opt_2000_2000.madx opt_0400_0400.madx opt_0150_0150.madx opt_0100_0100.madx opt_0075_0300.madx opt_0050_0200.madx opt_0075_0300hv.madx opt_0050_0200hv.madx opt_11000_11000thin.madx opt_5500_5500thin.madx opt_2000_2000thin.madx opt_0400_0400thin.madx opt_0150_0150thin.madx opt_0100_0100thin.madx opt_0075_0300thin.madx opt_0050_0200thin.madx opt_0075_0300hvthin.madx