

Machine Protection against Very Fast Crab Cavitiy Failures

High Luminosity LHC

MPP Tobias Baer May, 11th 2012

Acknowledgement: F. Burkart, R. Calaga, E. Jensen, R. de Maria, S. Fartoukh, R. Tomas, J. Tuckmantel, J. Wenninger, F. Zimmermann.

Content

Vien Z

1. Introduction and Analytical Approach

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

Content

ASS START OF

1. Introduction and Analytical Approach

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

KEK Crab Cavity Quench

- Full decay of crab cavity in ≈100µs (≈1 turn).
- Oscillations of Crab Cavity phase (up to 50° in 50µs).

Analytical Approach

• Horizontal kick by crab cavity:

$$x_{cc}'(z) = -\frac{q \cdot V}{E} \cdot \sin\left(\Phi + \frac{\omega \cdot z}{c}\right)$$

• Optimal voltage to compensate crossing angle (local scheme):

$$V_0 = \frac{c \cdot E \cdot \tan\left(\frac{\Theta}{2}\right)}{q \cdot \omega \cdot \sqrt{\beta^* \beta_u} \cdot \sin(\Delta \varphi) \cdot n_{cc}}$$

• Optimal voltage for compensating cavities:

$$\tilde{V}_{0} = -\sqrt{\frac{\beta_{u}}{\beta_{d}}} \cdot \cos(\Delta \varphi_{cc}) \cdot V_{0}$$
ideally 180°

= particle charge q Ε = particle Energy (7 TeV) = voltage of crab cavity V Φ = phase of crab cavity (0°) θ = full crossing angle (590 μ rad) $\Delta \varphi$ = phase advance CC ->IP (\approx 90°) $\Delta \varphi_{cc}$ = phase advance CC_u -> CC_d (181.4°) = angular frequency of CC ($2\pi \cdot 400$ MHz) ω = longitudinal position of particle Ζ = speed of light С B* = beta function at the IP β_{ud} = beta function at upstream/ downstream CC. n_{cc} = number of CCs per beam on either side of IP.

Analytical Approach

• Maximal transverse displacement by crab cavity: (assuming optimal voltage to compensate crossing angle)

$$\frac{\overline{x}_{cc}(z)}{\sigma_{x}} = -\frac{c \cdot \tan(\frac{\Theta}{2})}{\omega \cdot \sigma_{x,IP} \cdot \sin(\Delta \varphi) \cdot n_{cc}} \cdot \sin\left(\Phi + \frac{\omega \cdot z}{c}\right)$$
$$= 4.05 \text{ (upgrade optics, } \beta^{*} = 15cm, n_{cc} = 1$$
$$T. Baer et. al, IPAC'11, TUPZ009$$

			upgrade optics	nominal optics
Maximal displacement with $sin\left(\Phi+ ight)$	$\left(\frac{\omega \cdot z}{c}\right) = 1$	$\bar{x}_{\rm cc} \approx$	4 σ _x	1 σ _x
For z = 7.55cm (= $1 \cdot \sigma_z$):	$\bar{x}_{cc}(z = 7.55)$	icm) ≈	2.36σ _x	0.60σ _×

Failure Scenarios

Slow (external) failures

- Power cut
- Thermal problems
- Mechanical changes (tuner problem)

cf. J. Tuckmantel, "Failure Scenarios and Mitigation", LHC-CC10

Fast external failures

- Control-logics failure
- Operational failure
- Equipment failure
- ..

Timescale determined by Q_{ext}.

Internal failures

- Arc in coupler
- Multipacting
- Cavity quench (?)

Timescales < 1 turn possible.

Content

2 S S V A C / C

1. Introduction and Analytical Approach

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

Failure Simulations

- Crab cavity **local scheme IP5**, beam 1.
- No splitting of crab cavity kicks.
- Optics:
 - **SLHCV3.1b**, **β*** = **0.15m** (IP1/5), β* = 10.0m (IP2/8), Θ = 590µrad.
 - Nominal optics, $\beta^* = 0.55m$ (IP1/5), $\beta^* = 10.0m$ (IP2/8), $\Theta = 285\mu rad$.
- Instantaneous failure of single crab cavity, constant (e.g. at V=0) afterwards.
- Tracking for ≈20 turns.

A CARL

Bunchshape at **TCP.C6L7.B1** directly after failure.

Bunchshape at **TCP.C6L7.B1**, 1 turn after failure.

Bunchshape at **TCP.C6L7.B1**, 2 turns after failure.

Maximal Displacement

To isolate effect of CC failure and to be independent of particle distribution:

Maximal displacement:

$$\overline{x} = \sqrt{x_{\beta}^2 + (\alpha \cdot x_{\beta} + \beta \cdot x_{\beta}')^2}$$

with $x_{\beta} = x - D_x * \frac{\Delta p}{p}, x'_{\beta} = x' - D_{px} * \frac{\Delta p}{p}.$ constant around LHC (apart from IRs).

• Initial consitions:

x, x', y, y', dp/p = 0.

Displacement of up to 5o (n_{cc}=1).
 up to 1.7o with n_{cc}=3.

Content

ASS START OF

1. Introduction and Scaling Laws

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

Failure Dynamics

Fast external failures (e.g. control/operational failure):

• Time constant of crab cavity failures:

With $Q_{ext} = 1'250'000$, $f = 400MHz \rightarrow \tau_0 = \frac{Q_{ext}}{\pi \cdot f} \approx 1ms$.

- Maximal voltage change per turn: $\frac{\Delta V}{V} = 2 2\exp\left(-\frac{89\mu s}{1ms}\right) = 17\%$.
- Phase change in first turn: $\arctan\left(\frac{\frac{\Delta V}{V}}{1-\frac{\Delta V}{V}}\right) = 5.3^{\circ}$.

cf. T. Baer et. al, "LHC Machine Protection Against Very Fast Crab Cavity Failures", IPAC'11, J. Tuckmantel, CERN-ATS-Note-2011-002 TECH

Voltage Failure

- Dynamic voltage change of CC.R5: $V_0 \rightarrow -V_0$. $Q_{ext} = 1'250'000.$ Failure starts after turn 10.
- Resulting maximal displacement in 5 turns with n_{cc}=1:

 $\overline{x} = 2.1\sigma_x$ at $z = \pm 2.4\sigma_z$,

• The (longitudinal) bunch center is not displaced.

Phase Failure

Opposite phase change of both CCs.

Dependence on Q_{ext}.

In case of a **dephasing** of the crab cavities, the (longitudinal) **bunch center** is maximally displaced by up to **2**. $1\sigma_x$ in 5 turns (n_{cc}=1).

Content

ASS START OF

1. Introduction and Scaling Laws

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

Scaling Laws

Transverse Distribution

Highly overpopulated tails observed:

In horizontal plane about **4%** of beam beyond **4o_{meas}**. Corresponds to ≈**20-25 MJ** with HL-LHC parameters.

• Collimation system designed for fast accidental losses of up to **1MJ**.

R. Assmann, "Collimation for the LHC High Intensity Beams", HB2010

 Need to deplete tails (e.g. by hollow electron lens) such that crab cavity failures are compliant with collimation system specifications.

Table 3: Measured fraction of beam intensity in the tails of the beam outside selected multiples of the measured beam size, σ_{meas} , at 450 GeV.

u	$I_{tot,lost}(u)/I_{total}$	$I_{tot,lost}(u)/I_{total}$	$I_{tot,lost}(u)/I_{total}$
$[\sigma_{meas}]$	vertical	horizontal	skew
	B1	B1	B1
4	9.4e-3	3.8e-2	4.5e-2
5	2.2e-3	7.8e-3	1.3e-2
5.7	8.4e-4	1.6e-3	3.8e-3

F. Burkart et al., CERN-ATS-2011-115.

Mitigation Options

- Mitigation options:
 - Larger β^* (flat IR optics).
 - Smaller crossing angle (wire compensator).
 - Higher crab cavity frequency.
 - Crab kick by several **INDEPENDENT** crab cavities.
 - Larger Q_{ext} (= slower time constant of ext. failures).
 - Coupled RF feedback. P. Baudrenghien, LHC-CC11
 - Hollow electron lens to deplete transverse tails. (essential) G. Stancari, FERMILAB-PUB-11-192-AD-APC

- on cavity level.
- on beam level (head-tail-monitor?).

Possible Scenarios

Tolerable scenarios for internal and external failures with losses below 1MJ in max 5 turns:

	Scenario 1: 3 CCs	Scenario 2: $oldsymbol{eta}^*=25cm$	Scenario 3: 800 MHz
CC frequency (f)	400 MHz	400 MHz	800 MHz
Number of independant CCs (n _{cc})	3	3	3
Q _{ext}	1'250'000	1'250'000	1'250'000
$oldsymbol{eta}^*$	15 cm	25 cm	15 cm
Fraction to be depleted below 1MJ.	1.7σ	1.0 σ	0.9 σ

Magnet quenching in failure case not excluded.

Conclusion

- Failure scenarios are **strongly optics (β*) dependent.**
- Very fast (internal) crab cavity failures can lead to global betatron oscillations with amplitudes of up to 5σ (n_{cc}=1).

Unacceptable with multi-MJ tails. Better understanding of failure scenarios (e.g. quench) needed.

- External crab cavity failures can transversely displace the (longitudinal) bunch center by up to 2.1σ within 5 turns (n_{cc}=1).
- Mitigation options:
 - Lower voltage (partial compensation of crossing angle), or larger β^* .
 - Crab kick by several **INDEPENDENT** crab cavities.
 - Higher cavity frequency.
 - Larger Q_{ext} (= slower time constant of external failures).
 - Coupled RF feedback.
 - Hollow electron lens to deplete transverse tails (essential).

Thank you for your Attention

Tobias Baer

CERN BE/OP

Tobias.Baer@cern.ch

Office: +41 22 76 75379

Further information:

- T. Baer et al., "Machine Protection of LHC Crab Cavities", LHC-CC11, Nov. 2011.
- E. Jensen et al., "Crab Cavity", 1st HiLumi LHC / LARP Meeting, Nov. 2011.
- T. Baer et al., "LHC Machine Protection against Very Fast Crab Cavity Failures", IPAC'11, Sept. 2011.
- T. Baer, "Beam Dynamics Aspects of Crab Cavity Failures", December 2010.
- J. Tuckmantel, "Failure scenarios and mitigation", LHC-CC10, December 2010

Backup slides

Phase Change

Maximal displacement with Gaussian transverse and longitudinal beam distribution.

Maximal displacement with Gaussian longitudinal beam distribution.

In case of a **dephasing** of the crab cavities left and right of the IP, the (longitudinal) **bunch center** is maximally displaced, by up to $2.2\sigma_x$ in 5 turns.

Normalized Phase Space

Single particle emittance:

$$\epsilon = \frac{\left(\alpha x_{\beta} + \beta x_{\beta}'\right)^{2}}{\beta} + \frac{x_{\beta}^{2}}{\beta}$$
with $x_{\beta} = x - D_{x} * \frac{\Delta p}{p}, x_{\beta}' = x' - D_{px} * \frac{\Delta p}{p}.$

Maximal displacement:

$$\bar{x} = \sqrt{\epsilon \cdot \beta} = \sqrt{x_{\beta}^2 + (\alpha \cdot x_{\beta} + \beta \cdot x_{\beta}')^2}.$$

90° Phase Change

• Maximal phase change in first turn:

$$\varphi = \arctan\left(\frac{\frac{\Delta V}{V}}{1 - \frac{\Delta V}{V}}\right) = 5.3^{\circ}.$$

• Phase change is fastest if cavity voltage changes as well.

Amplitude of cavity voltage.

Content

ASS STANT OF

Static Failure Scenarios

Very Simple Approximation

Expected beamlosses from simple Monte Carlo: Particle is lost if |RAND_{Gauss} + 2.52 · RAND_{Gauss}| > 5.7

-> Expected loss: (3.5 ± 0.2)%

Simple Approximation (MC)

Beamloss approximation with simple Monte Carlo (upgrade optics):

Failure of single cavity (V -> 0): <u>Scaling factor (≈ 1.12)</u>

Particle is lost if $|x + x_{cc}(z) \cdot k(\Delta \phi_{CC->TCP})| > 5.7 \cdot \sigma_x$

Distribution Distribution
 -> expected loss: (0.88 ± 0.06)%

1. Gaussian

• Phase error of single cavity ($\Phi \rightarrow \pi/2$):

Particle is lost if $|x + x_{cc}(z, \Phi = \pi/2) \cdot k - x_{cc}(z, \Phi = 0) \cdot k| > 5.7\sigma_x$ CC with failure
CC without failure

2. Gaussian

-> expected loss: (24.8 ± 0.3)%

Content

255 SV147./ 7

Static Tracking Studies with upgrade optics (MAD-X)

• Fast Voltage Decay

• Phase Error

255 N/487. / 0

Voltage of Crab.R5.B1 = 0.

Total beam loss: 1.3% in 2 turns (2% in first 10 turns), mainly at TCP.C6L7.B1.

20101214-133413-v102_ft=7_NCC=1_VR5=1_pL5=0_o1_aper

May, 11th 2012

Bunchshape at **TCP.C6L7.B1** directly after failure.

Bunchshape at **TCP.C6L7.B1**, 1 turn after failure.

Bunchshape at **TCP.C6L7.B1**, 2 turns after failure.

May, 11th 2012

Content

A STAN A CONTRACT OF

Static Tracking Studies with upgrade optics (MAD-X)

• Fast Voltage Decay

• Phase Error

Phase Error of CRAB.L5.B1

12 SS SV 47. / 02

Upgrade Optics, Phase of Crab.L5.B1 = $-\pi/2$.

Total beam loss: 15% - 35% in 2 turns, mainly at TCP.C6L7.B1

Phase Error of CRAB.L5.B1

Bunchshape at **TCP.C6L7.B1** directly after failure.

May, 11th 2012

Phase Error of CRAB.L5.B1

Bunchshape at TCP.C6L7.B1, 1 turn after failure.

Losses vs β*

NACI I

