

Machine Protection against Very Fast Crab Cavitiy Failures

MPP Tobias Baer May, 11th 2012

Acknowledgement: F. Burkart, R. Calaga, E. Jensen, R. de Maria, S. Fartoukh, R. Tomas, J. Tuckmantel, J. Wenninger, F. Zimmermann.

High
Luminosity
LHC

Content

1. Introduction and Analytical Approach

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

Content

EXAMALIE

1. Introduction and Analytical Approach

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

KEK Crab Cavity Quench

- Full decay of crab cavity in **≈100µs** (≈1 turn).
- Oscillations of Crab Cavity phase (**up to 50° in 50µs**).

• Horizontal kick by crab cavity:

$$
x'_{cc}(z) = -\frac{q \cdot V}{E} \cdot \sin\left(\Phi + \frac{\omega \cdot z}{c}\right)
$$

• Optimal voltage to compensate crossing angle (local scheme):

$$
V_0 = \frac{c \cdot E \cdot \tan\left(\frac{\Theta}{2}\right)}{q \cdot \omega \cdot \sqrt{\beta^* \beta_u} \cdot \sin(\Delta \varphi) \cdot n_{cc}}
$$

• Optimal voltage for compensating cavities:

$$
\tilde{V}_0 = -\sqrt{\frac{\beta_u}{\beta_d} \cdot \cos(\Delta \varphi_{cc}) \cdot V_0}
$$
\n
$$
\text{ideally 180}^{\circ}
$$

 $q =$ particle charge $E =$ particle Energy (7 TeV) $V =$ voltage of crab cavity Φ = phase of crab cavity (0°) θ = full crossing angle (590 µrad) $\Delta \varphi$ = phase advance CC ->IP ($\approx 90^{\circ}$) $\Delta\varphi_{cc}$ = phase advance CC_u -> CC_d (181.4°) $ω =$ angular frequency of CC (2π⋅400 MHz) $z =$ longitudinal position of particle $c =$ speed of light β^* [∗] = beta function at the IP $\beta_{u,d}$ = beta function at upstream/ downstream CC. n_{cc} = number of CCs per beam on either side of IP.

Analytical Approach

Maximal transverse displacement by crab cavity: *(assuming optimal voltage to compensate crossing angle)*

$$
\frac{\overline{x}_{cc}(z)}{\sigma_x} = -\frac{c \cdot \tan(\frac{\Theta}{2})}{\omega \cdot \sigma_{x,IP} \cdot \sin(\Delta \varphi) \cdot n_{cc}} \cdot \sin\left(\Phi + \frac{\omega \cdot z}{c}\right)
$$

= 4.05 (upgrade optics, $\beta^* = 15cm$, n_{cc}=1)
T. Baer et. al, IPAC'11, TUPZ009

Failure Scenarios

Slow (external) failures

- Power cut
- Thermal problems
- Mechanical changes (tuner problem)

cf. J. Tuckmantel, "Failure Scenarios and Mitigation", LHC-CC10

Fast external failures

- Control-logics failure
- Operational failure
- Equipment failure
- …

Timescale determined by Qext.

Internal failures

- Arc in coupler
- Multipacting
- Cavity quench (?)

Timescales < 1 turn possible.

May, 11 Tobias Baer th 2012 7

Content

EXAMALIE

1. Introduction and Analytical Approach

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

Failure Simulations

- Crab cavity **local scheme IP5**, beam 1.
- **No splitting of crab cavity kicks.**
- Optics:
	- **SLHCV3.1b,** $\beta^* = 0.15$ **m (IP1/5),** $\beta^* = 10.0$ **m (IP2/8),** $\theta = 590$ **μrad.**
	- Nominal optics**, β* = 0.55m** (IP1/5), β* = 10.0m (IP2/8), Ѳ = 285µrad.
- Instantaneous failure of single crab cavity, constant (e.g. at $V=0$) afterwards.
- Tracking for \approx 20 turns.

EXAMAZ

Bunchshape at **TCP.C6L7.B1** directly after failure.

May, 11 Tobias Baer th 2012 11

Bunchshape at **TCP.C6L7.B1**, 1 turn after failure.

Bunchshape at **TCP.C6L7.B1**, 2 turns after failure.

May, 11th 2012 13

Maximal Displacement

To **isolate effect of CC failure** and to be **independent of particle distribution:**

• **Maximal displacement**:

$$
\overline{x} = \sqrt{x_{\beta}^2 + (\alpha \cdot x_{\beta} + \beta \cdot x_{\beta}^{\prime})^2}
$$

with $x_{\beta} = x - D_x * \frac{\Delta p}{n}$ $\frac{\Delta p}{p}$, $x'_{\beta} = x' - D_{px} * \frac{\Delta p}{p}$ $\frac{4p}{p}$. *constant around LHC (apart from IRs).*

• **Initial consitions:**

x, x', y, y', dp/p = 0.

Displacement of up to 5σ (n_{cc}=1). *up to 1.7σ with ncc=3.*

Content

ESSAMALI

1. Introduction and Scaling Laws

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

Failure Dynamics

Fast external failures (e.g. control/operational failure):

• Time constant of crab cavity failures:

With Q_{ext} = 1'250'000, f = 400MHz $\rightarrow \tau_0 = \frac{Q_{ext}}{\pi \cdot f}$ $\boldsymbol{\pi}\cdot\boldsymbol{f}$ \approx 1ms.

- Maximal voltage change per turn: $\frac{\Delta V}{V}$ V $= 2 - 2 \exp \left(-\frac{89 \mu s}{4 \pi \epsilon^2}\right)$ 1ms $= 17\%$.
- Phase change in first turn: arctan ΔV \overline{V} $\left(\frac{V}{1-\frac{\Delta V}{V}}\right) = 5.3^{\circ}.$ V

cf. T. Baer et. al, "LHC Machine Protection Against Very Fast Crab Cavity Failures", IPAC'11, J. Tuckmantel, CERN-ATS-Note-2011-002 TECH

Voltage Failure

- **Dynamic voltage change** of CC.R5: $V_0 \rightarrow -V_0$. $Q_{ext} = 1'250'000.$ *Failure starts after turn 10.*
- Resulting maximal displacement in 5 turns with n_{cc} =1:

 \overline{x} = 2. 1 σ_x at z = \pm 2. 4 σ_z ,

• **The (longitudinal) bunch center is not displaced.**

Phase Failure

Opposite phase change of both CCs. Dependence on Qext.

In case of a **dephasing** of the crab cavities, the (longitudinal) **bunch center** is maximally displaced by up to 2. $1\sigma_x$ in 5 turns (n_{cc}=1).

Content

ESSAMALI

1. Introduction and Scaling Laws

2. Static Failure Simulations (MAD-X)

3. Dynamic Failure Simulations (MAD-X)

4. Mitigation and Conclusion

Scaling Laws

Transverse Distribution

• Highly overpopulated tails observed:

In horizontal plane about 4% of beam beyond 4σmeas. Corresponds to ≈20-25 MJ with HL-LHC parameters.

• Collimation system designed for fast accidental losses of up to **1MJ**.

R. Assmann, "Collimation for the LHC High Intensity Beams", HB2010

• Need to **deplete tails** (e.g. by **hollow electron lens**) such that crab cavity failures are compliant with collimation system specifications.

Table 3: Measured fraction of beam intensity in the tails of the beam outside selected multiples of the measured beam size, σ_{meas} , at 450 GeV.

F. Burkart et al., CERN-ATS-2011-115.

Mitigation Options

- Mitigation options:
	- Larger β^* (flat IR optics).
	- *Smaller crossing angle (wire compensator).*
	- *Higher crab cavity frequency.*
	- *Crab kick by several INDEPENDENT crab cavities.*
	- *Larger Qext (= slower time constant of ext. failures).*
	- *Coupled RF feedback. P. Baudrenghien, LHC-CC11*
	- *Hollow electron lens to deplete transverse tails. (essential) G. Stancari, FERMILAB-PUB-11-192-AD-APC*

- *on cavity level.*
- *on beam level (head-tail-monitor?).*

Possible Scenarios

Tolerable scenarios for internal and external failures with losses below 1MJ in max 5 turns:

Magnet quenching in failure case not excluded.

Conclusion

- Failure scenarios are **strongly optics (β*) dependent.**
- **Very fast (internal) crab cavity failures** can lead to **global betatron oscillations** with amplitudes of up to 5σ (n_{cc}=1).

Unacceptable with multi-MJ tails. Better understanding of failure scenarios (e.g. quench) needed.

- **External crab cavity failures** can transversely displace the (longitudinal) **bunch center** by up to 2.1σ within 5 turns ($n_{cc}=1$).
- Mitigation options:
	- Lower voltage (partial compensation of crossing angle), or larger β^* .
	- *Crab kick by several INDEPENDENT crab cavities.*
	- *Higher cavity frequency.*
	- *Larger Qext (= slower time constant of external failures).*
	- *Coupled RF feedback.*
	- *Hollow electron lens to deplete transverse tails (essential).*

Thank you for your Attention

Tobias Baer

CERN BE/OP

Tobias.Baer@cern.ch

Office: +41 22 76 75379

Further information:

- T. Baer et al., "Machine Protection of LHC Crab Cavities", LHC-CC11, Nov. 2011.
- E. Jensen et al., "Crab Cavity", 1st HiLumi LHC / LARP Meeting, Nov. 2011.
- T. Baer et al., "LHC Machine Protection against Very Fast Crab Cavity Failures", IPAC'11, Sept. 2011.
- T. Baer, "Beam Dynamics Aspects of Crab Cavity Failures", December 2010.
- J. Tuckmantel, "Failure scenarios and mitigation", LHC-CC10, December 2010

Backup slides

Phase Change

Maximal displacement with Gaussian transverse and longitudinal beam distribution.

Maximal displacement with Gaussian longitudinal beam distribution.

In case of a **dephasing** of the crab cavities left and right of the IP, the (longitudinal) **bunch center** is maximally displaced, by up to 2. $2\sigma_x$ in 5 turns.

Normalized Phase Space

Single particle emittance:
\n
$$
\epsilon = \frac{(\alpha x_{\beta} + \beta x_{\beta}')^{2}}{\beta} + \frac{x_{\beta}^{2}}{\beta}
$$
\nwith $x_{\beta} = x - D_{x} * \frac{\Delta p}{p}$, $x_{\beta}' = x' - D_{px} * \frac{\Delta p}{p}$

Maximal displacement:

$$
\bar{x} = \sqrt{\epsilon \cdot \beta} = \sqrt{x_{\beta}^2 + (\alpha \cdot x_{\beta} + \beta \cdot x_{\beta}^{\prime})^2}.
$$

.

90° Phase Change

• Maximal phase change in first turn:

$$
\varphi = \arctan\left(\frac{\frac{\Delta V}{V}}{1 - \frac{\Delta V}{V}}\right) = 5.3^\circ.
$$

Phase change is fastest if cavity voltage changes as well.

Amplitude of cavity voltage.

Content

ESS SYMALI

Static Failure Scenarios

Very Simple Approximation

Expected beamlosses from simple Monte Carlo: Particle is lost if $|RAND_{Gauss} + 2.52 \cdot RAND_{Gauss}| > 5.7$

-> Expected loss: **(3.5 ± 0.2)%**

Simple Approximation (MC)

Beamloss approximation with simple Monte Carlo (upgrade optics):

• Failure of single cavity (V -> 0): $\sqrt{\frac{Scaling}{\text{factor}}(z-1.12)}$ Particle is lost if $|x + x_{cc}(z) \cdot k(\Delta \varphi_{CC \to TCP})| > 5.7 \cdot \sigma_x$

-> expected loss: **(0.88 ± 0.06)% Distribution Distribution**

1. Gaussian

• Phase error of single cavity $(\Phi \rightarrow \pi/2)$: Particle is lost if $|x + x_{cc}(z, \Phi = \pi/2)$ ⋅k - $x_{cc}(z, \Phi = 0)$ ⋅k | > 5.7 σ_x CC with failure CC without failure

2. Gaussian

-> expected loss: **(24.8 ± 0.3)%**

Content

ESSANALIZ

Static Tracking Studies with upgrade optics (MAD-X)

• Fast Voltage Decay

• Phase Error

 \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}

Voltage of Crab.R5.B1 = 0 .

Total beam loss: **1.3%** in 2 turns (2% in first 10 turns), mainly at **TCP.C6L7.B1**.

Bunchshape at **TCP.C6L7.B1** directly after failure.

Bunchshape at **TCP.C6L7.B1**, 1 turn after failure.

Bunchshape at **TCP.C6L7.B1**, 2 turns after failure.

Content

ESSIMALI

Static Tracking Studies with upgrade optics (MAD-X)

• Fast Voltage Decay

• Phase Error

Phase Error of CRAB.L5.B1

ESSANALI

Upgrade Optics, Phase of Crab.L5.B1 = $-\pi/2$.

Total beam loss: **15% - 35%** in 2 turns, mainly at **TCP.C6L7.B1**

Phase Error of CRAB.L5.B1

Bunchshape at **TCP.C6L7.B1** directly after failure.

Phase Error of CRAB.L5.B1

Bunchshape at **TCP.C6L7.B1**, 1 turn after failure.

Losses vs β*

